We consider unconstrained optimization problems with nonsmooth and convex objective function in the form of mathematical expectation. The proposed method approximates the objective function with a sample average function by using different sample size in each iteration. The sample size is chosen in an adaptive manner based on the Inexact Restoration. The method uses line search and assumes descent directions with respect to the current approximate function. We prove the almost sure convergence under the standard assumptions. The convergence rate is also considered and the worst-case complexity of $\mathcal{O} (\varepsilon^{-2})$ is proved. Numerical results for two types of problems, machine learning hinge loss and stochastic linear complementarity problems, show the efficiency of the proposed scheme.
We study the problem of robustly estimating the parameter $p$ of an Erd\H{o}s-R\'enyi random graph on $n$ nodes, where a $\gamma$ fraction of nodes may be adversarially corrupted. After showing the deficiencies of canonical estimators, we design a computationally-efficient spectral algorithm which estimates $p$ up to accuracy $\tilde O(\sqrt{p(1-p)}/n + \gamma\sqrt{p(1-p)} /\sqrt{n}+ \gamma/n)$ for $\gamma < 1/60$. Furthermore, we give an inefficient algorithm with similar accuracy for all $\gamma <1/2$, the information-theoretic limit. Finally, we prove a nearly-matching statistical lower bound, showing that the error of our algorithms is optimal up to logarithmic factors.
This article develops a new algorithm named TTRISK to solve high-dimensional risk-averse optimization problems governed by differential equations (ODEs and/or PDEs) under uncertainty. As an example, we focus on the so-called Conditional Value at Risk (CVaR), but the approach is equally applicable to other coherent risk measures. Both the full and reduced space formulations are considered. The algorithm is based on low rank tensor approximations of random fields discretized using stochastic collocation. To avoid non-smoothness of the objective function underpinning the CVaR, we propose an adaptive strategy to select the width parameter of the smoothed CVaR to balance the smoothing and tensor approximation errors. Moreover, unbiased Monte Carlo CVaR estimate can be computed by using the smoothed CVaR as a control variate. To accelerate the computations, we introduce an efficient preconditioner for the KKT system in the full space formulation.The numerical experiments demonstrate that the proposed method enables accurate CVaR optimization constrained by large-scale discretized systems. In particular, the first example consists of an elliptic PDE with random coefficients as constraints. The second example is motivated by a realistic application to devise a lockdown plan for United Kingdom under COVID-19. The results indicate that the risk-averse framework is feasible with the tensor approximations under tens of random variables.
Several decades ago the Proximal Point Algorithm (PPA) stated to gain a long-lasting attraction for both abstract operator theory and numerical optimization communities. Even in modern applications, researchers still use proximal minimization theory to design scalable algorithms that overcome nonsmoothness. Remarkable works as \cite{Fer:91,Ber:82constrained,Ber:89parallel,Tom:11} established tight relations between the convergence behavior of PPA and the regularity of the objective function. In this manuscript we derive nonasymptotic iteration complexity of exact and inexact PPA to minimize convex functions under $\gamma-$Holderian growth: $\BigO{\log(1/\epsilon)}$ (for $\gamma \in [1,2]$) and $\BigO{1/\epsilon^{\gamma - 2}}$ (for $\gamma > 2$). In particular, we recover well-known results on PPA: finite convergence for sharp minima and linear convergence for quadratic growth, even under presence of inexactness. However, without taking into account the concrete computational effort paid for computing each PPA iteration, any iteration complexity remains abstract and purely informative. Therefore, using an inner (proximal) gradient/subgradient method subroutine that computes inexact PPA iteration, we secondly show novel computational complexity bounds on a restarted inexact PPA, available when no information on the growth of the objective function is known. In the numerical experiments we confirm the practical performance and implementability of our framework.
Safe exploration is a key to applying reinforcement learning (RL) in safety-critical systems. Existing safe exploration methods guaranteed safety under the assumption of regularity, and it has been difficult to apply them to large-scale real problems. We propose a novel algorithm, SPO-LF, that optimizes an agent's policy while learning the relation between a locally available feature obtained by sensors and environmental reward/safety using generalized linear function approximations. We provide theoretical guarantees on its safety and optimality. We experimentally show that our algorithm is 1) more efficient in terms of sample complexity and computational cost and 2) more applicable to large-scale problems than previous safe RL methods with theoretical guarantees, and 3) comparably sample-efficient and safer compared with existing advanced deep RL methods with safety constraints.
This paper studies a Group Influence with Minimum cost which aims to find a seed set with smallest cost that can influence all target groups, where each user is associated with a cost and a group is influenced if the total score of the influenced users belonging to the group is at least a certain threshold. As the group-influence function is neither submodular nor supermodular, theoretical bounds on the quality of solutions returned by the well-known greedy approach may not be guaranteed. To address this challenge, we propose a bi-criteria polynomial-time approximation algorithm with high certainty. At the heart of the algorithm is a novel group reachable reverse sample concept, which helps speed up the estimation of the group influence function. Finally, extensive experiments conducted on real social networks show that our proposed algorithm outperform the state-of-the-art algorithms in terms of the objective value and the running time.
This paper presents AGGLIO (Accelerated Graduated Generalized LInear-model Optimization), a stage-wise, graduated optimization technique that offers global convergence guarantees for non-convex optimization problems whose objectives offer only local convexity and may fail to be even quasi-convex at a global scale. In particular, this includes learning problems that utilize popular activation functions such as sigmoid, softplus and SiLU that yield non-convex training objectives. AGGLIO can be readily implemented using point as well as mini-batch SGD updates and offers provable convergence to the global optimum in general conditions. In experiments, AGGLIO outperformed several recently proposed optimization techniques for non-convex and locally convex objectives in terms of convergence rate as well as convergent accuracy. AGGLIO relies on a graduation technique for generalized linear models, as well as a novel proof strategy, both of which may be of independent interest.
In the current paper we provide constructive estimation of the convergence rate for training a known class of neural networks: the multi-class logistic regression. Despite several decades of successful use, our rigorous results appear new, reflective of the gap between practice and theory of machine learning. Training a neural network is typically done via variations of the gradient descent method. If a minimum of the loss function exists and gradient descent is used as the training method, we provide an expression that relates learning rate to the rate of convergence to the minimum. The method involves an estimate of the condition number of the Hessian of the loss function. We also discuss the existence of a minimum, as it is not automatic that a minimum exists. One method of ensuring convergence is by assigning positive probabiity to every class in the training dataset.
Leveraging biased click data for optimizing learning to rank systems has been a popular approach in information retrieval. Because click data is often noisy and biased, a variety of methods have been proposed to construct unbiased learning to rank (ULTR) algorithms for the learning of unbiased ranking models. Among them, automatic unbiased learning to rank (AutoULTR) algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their differences in theories and algorithm design, existing studies on ULTR usually use uni-variate ranking functions to score each document or result independently. On the other hand, recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels. Whether such superior performance would hold in ULTR with noisy data, however, is mostly unknown. In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework. Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform those with uni-variate scoring functions and permutation-variant multivariate scoring functions.
We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.