亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a framework for the multiscale modeling of finite strain magneto-elasticity based on physics-augmented neural networks (NNs). By using a set of problem specific invariants as input, an energy functional as the output and by adding several non-trainable expressions to the overall total energy density functional, the model fulfills multiple physical principles by construction, e.g., thermodynamic consistency and material symmetry. Three NN-based models with varying requirements in terms of an extended polyconvexity condition of the magneto-elastic potential are presented. First, polyconvexity, which is a global concept, is enforced via input convex neural networks (ICNNs). Afterwards, we formulate a relaxed local version of the polyconvexity and fulfill it in a weak sense by adding a tailored loss term. As an alternative, a loss term to enforce the weaker requirement of strong ellipticity locally is proposed, which can be favorable to obtain a better trade-off between compatibility with data and physical constraints. Databases for training of the models are generated via computational homogenization for both compressible and quasi-incompressible magneto-active polymers (MAPs). Thereby, to reduce the computational cost, 2D statistical volume elements and an invariant-based sampling technique for the pre-selection of relevant states are used. All models are calibrated by using the database, whereby interpolation and extrapolation are considered separately. Furthermore, the performance of the NN models is compared to a conventional model from the literature. The numerical study suggests that the proposed physics-augmented NN approach is advantageous over the conventional model for MAPs. Thereby, the two more flexible NN models in combination with the weakly enforced local polyconvexity lead to good results, whereas the model based only on ICNNs has proven to be too restrictive.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Analysis · 離散化 · Neural Networks · 振蕩 ·
2023 年 10 月 17 日

We describe and analyze a hybrid finite element/neural network method for predicting solutions of partial differential equations. The methodology is designed for obtaining fine scale fluctuations from neural networks in a local manner. The network is capable of locally correcting a coarse finite element solution towards a fine solution taking the source term and the coarse approximation as input. Key observation is the dependency between quality of predictions and the size of training set which consists of different source terms and corresponding fine & coarse solutions. We provide the a priori error analysis of the method together with the stability analysis of the neural network. The numerical experiments confirm the capability of the network predicting fine finite element solutions. We also illustrate the generalization of the method to problems where test and training domains differ from each other.

Engineers are often faced with the decision to select the most appropriate model for simulating the behavior of engineered systems, among a candidate set of models. Experimental monitoring data can generate significant value by supporting engineers toward such decisions. Such data can be leveraged within a Bayesian model updating process, enabling the uncertainty-aware calibration of any candidate model. The model selection task can subsequently be cast into a problem of decision-making under uncertainty, where one seeks to select the model that yields an optimal balance between the reward associated with model precision, in terms of recovering target Quantities of Interest (QoI), and the cost of each model, in terms of complexity and compute time. In this work, we examine the model selection task by means of Bayesian decision theory, under the prism of availability of models of various refinements, and thus varying levels of fidelity. In doing so, we offer an exemplary application of this framework on the IMAC-MVUQ Round-Robin Challenge. Numerical investigations show various outcomes of model selection depending on the target QoI.

We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, and for evolution times around 8 times longer, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling of fluid-structure interaction systems. With the aid of an arbitrary Lagrangian-Eulerian formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition, and the prediction of these coefficients over time is handled by a single multi-layer perceptron. A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid-fluid interface; hence it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid-structure systems, namely the flow around an elastically-mounted cylinder, and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps, and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid-structure interactions.

In this paper we propose a {\it discontinuous} plane wave neural network (DPWNN) method with $hp-$refinement for approximately solving Helmholtz equation and time-harmonic Maxwell equations. In this method, we define a quadratic functional as in the plane wave least square (PWLS) method with $h-$refinement and introduce new discretization sets spanned by element-wise neural network functions with a single hidden layer, where the activation function on each element is chosen as a complex-valued exponential function like the plane wave function. The desired approximate solution is recursively generated by iteratively solving the minimization problem associated with the functional and the sets described above, which is defined by a sequence of approximate minimizers of the underlying residual functionals, where plane wave direction angles and activation coefficients are alternatively computed by iterative algorithms. For the proposed DPWNN method, the plane wave directions are adaptively determined in the iterative process, which is different from that in the standard PWLS method (where the plane wave directions are preliminarily given). Numerical experiments will confirm that this DPWNN method can generate approximate solutions with higher accuracy than the PWLS method.

We propose a new framework for the simultaneous inference of monotone smooth time varying functions under complex temporal dynamics utilizing the monotone rearrangement and the nonparametric estimation. We capitalize the Gaussian approximation for the nonparametric monotone estimator and construct the asymptotically correct simultaneous confidence bands (SCBs) by carefully designed bootstrap methods. We investigate two general and practical scenarios which have received limited attention. The first is the simultaneous inference of monotone smooth trends from moderately high dimensional time series, and the proposed algorithm has been employed for the joint inference of temperature curves from multiple areas. Specifically, most existing methods are designed for a single monotone smooth trend. In such cases, our proposed SCB empirically exhibits the narrowest width among existing approaches while maintaining confidence levels. The second scenario involves simultaneous inference of monotone smooth regression coefficient functions in time-varying linear models. The proposed algorithm has been utilized for testing the impact of sunshine duration on temperature which is believed to be increasing by the greenhouse effect hypothesis. The validity of the proposed methods has been justified theoretically as well as extensive simulations.

We introduce a lower bounding technique for the min max correlation clustering problem and, based on this technique, a combinatorial 4-approximation algorithm for complete graphs. This improves upon the previous best known approximation guarantees of 5, using a linear program formulation (Kalhan et al., 2019), and 4, for a combinatorial algorithm (Davies et al., 2023). We extend this algorithm by a greedy joining heuristic and show empirically that it improves the state of the art in solution quality and runtime on several benchmark datasets.

We formulate and solve data-driven aerodynamic shape design problems with distributionally robust optimization (DRO) approaches. Building on the findings of the work \cite{gotoh2018robust}, we study the connections between a class of DRO and the Taguchi method in the context of robust design optimization. Our preliminary computational experiments on aerodynamic shape optimization in transonic turbulent flow show promising design results.

Molecular mechanics (MM) force fields -- fast, empirical models characterizing the potential energy surface of molecular systems via simple parametric pairwise and valence interactions -- have traditionally relied on labor-intensive, inflexible, and poorly extensible discrete chemical parameter assignment rules using look-up tables for discrete atom or interaction types. Here, we introduce a machine-learned MM force field, espaloma-0.3, where the rule-based discrete atom-typing schemes are replaced with a continuous atom representations using graph neural networks. Trained in an end-to-end differentiable manner directly from a large, diverse quantum chemical dataset of over 1.1M energy and force calculations, espaloma-0.3 covers chemical spaces highly relevant to the broad interest in biomolecular modeling, including small molecules, proteins, and RNA. We show that espaloma-0.3 accurately predicts quantum chemical energies and forces while maintaining stable quantum chemical energy-minimized geometries. It can self-consistently parameterize both protein and ligand, producing highly accurate protein-ligand binding free energy predictions. Capable of fitting new force fields to large quantum chemical datasets with a single GPU-day of training, this approach demonstrates significant promise as a path forward for building systematically more accurate force fields that can be easily extended to new chemical domains of interest. The espaloma-0.3 force field is available for use directly or within OpenMM via the open-source Espaloma package //github.com/choderalab/espaloma, and both the code and datasets for constructing this force field are openly available //github.com/choderalab/refit-espaloma.

Physics informed neural network (PINN) based solution methods for differential equations have recently shown success in a variety of scientific computing applications. Several authors have reported difficulties, however, when using PINNs to solve equations with multiscale features. The objective of the present work is to illustrate and explain the difficulty of using standard PINNs for the particular case of divergence-form elliptic partial differential equations (PDEs) with oscillatory coefficients present in the differential operator. We show that if the coefficient in the elliptic operator $a^{\epsilon}(x)$ is of the form $a(x/\epsilon)$ for a 1-periodic coercive function $a(\cdot)$, then the Frobenius norm of the neural tangent kernel (NTK) matrix associated to the loss function grows as $1/\epsilon^2$. This implies that as the separation of scales in the problem increases, training the neural network with gradient descent based methods to achieve an accurate approximation of the solution to the PDE becomes increasingly difficult. Numerical examples illustrate the stiffness of the optimization problem.

北京阿比特科技有限公司