亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unmanned air vehicles (UAVs) popularity is on the rise as it enables the services like traffic monitoring, emergency communications, deliveries, and surveillance. However, the unauthorized usage of UAVs (a.k.a drone) may violate security and privacy protocols for security-sensitive national and international institutions. The presented challenges require fast, efficient, and precise detection of UAVs irrespective of harsh weather conditions, the presence of different objects, and their size to enable SafeSpace. Recently, there has been significant progress in using the latest deep learning models, but those models have shortcomings in terms of computational complexity, precision, and non-scalability. To overcome these limitations, we propose a precise and efficient multiscale and multifeature UAV detection network for SafeSpace, i.e., \textit{MultiFeatureNet} (\textit{MFNet}), an improved version of the popular object detection algorithm YOLOv5s. In \textit{MFNet}, we perform multiple changes in the backbone and neck of the YOLOv5s network to focus on the various small and ignored features required for accurate and fast UAV detection. To further improve the accuracy and focus on the specific situation and multiscale UAVs, we classify the \textit{MFNet} into small (S), medium (M), and large (L): these are the combinations of various size filters in the convolution and the bottleneckCSP layers, reside in the backbone and neck of the architecture. This classification helps to overcome the computational cost by training the model on a specific feature map rather than all the features. The dataset and code are available as an open source: github.com/ZeeshanKaleem/MultiFeatureNet.

相關內容

The detection of small and medium-sized objects in three dimensions has always been a frontier exploration problem. This technology has a very wide application in sports analysis, games, virtual reality, human animation and other fields. The traditional three-dimensional small target detection technology has the disadvantages of high cost, low precision and inconvenience, so it is difficult to apply in practice. With the development of machine learning and deep learning, the technology of computer vision algorithms is becoming more mature. Creating an immersive media experience is considered to be a very important research work in sports. The main work is to explore and solve the problem of football detection under the multiple cameras, aiming at the research and implementation of the live broadcast system of football matches. Using multi cameras detects a target ball and determines its position in three dimension with the occlusion, motion, low illumination of the target object. This paper designed and implemented football detection system under multiple cameras for the detection and capture of targets in real-time matches. The main work mainly consists of three parts, football detector, single camera detection, and multi-cameras detection. The system used bundle adjustment to obtain the three-dimensional position of the target, and the GPU to accelerates data pre-processing and achieve accurate real-time capture of the target. By testing the system, it shows that the system can accurately detect and capture the moving targets in 3D. In addition, the solution in this paper is reusable for large-scale competitions, like basketball and soccer. The system framework can be well transplanted into other similar engineering project systems. It has been put into the market.

When estimating causal effects, it is important to assess external validity, i.e., determine how useful a given study is to inform a practical question for a specific target population. One challenge is that the covariate distribution in the population underlying a study may be different from that in the target population. If some covariates are effect modifiers, the average treatment effect (ATE) may not generalize to the target population. To tackle this problem, we propose new methods to generalize or transport the ATE from a source population to a target population, in the case where the source and target populations have different sets of covariates. When the ATE in the target population is identified, we propose new doubly robust estimators and establish their rates of convergence and limiting distributions. Under regularity conditions, the doubly robust estimators provably achieve the efficiency bound and are locally asymptotic minimax optimal. A sensitivity analysis is provided when the identification assumptions fail. Simulation studies show the advantages of the proposed doubly robust estimator over simple plug-in estimators. Importantly, we also provide minimax lower bounds and higher-order estimators of the target functionals. The proposed methods are applied in transporting causal effects of dietary intake on adverse pregnancy outcomes from an observational study to the whole U.S. female population.

With the advent of technologies such as Edge computing, the horizons of remote computational applications have broadened multidimensionally. Autonomous Unmanned Aerial Vehicle (UAV) mission is a vital application to utilize remote computation to catalyze its performance. However, offloading computational complexity to a remote system increases the latency in the system. Though technologies such as 5G networking minimize communication latency, the effects of latency on the control of UAVs are inevitable and may destabilize the system. Hence, it is essential to consider the delays in the system and compensate for them in the control design. Therefore, we propose a novel Edge-based predictive control architecture enabled by 5G networking, PACED-5G (Predictive Autonomous Control using Edge for Drones over 5G). In the proposed control architecture, we have designed a state estimator for estimating the current states based on the available knowledge of the time-varying delays, devised a Model Predictive controller (MPC) for the UAV to track the reference trajectory while avoiding obstacles, and provided an interface to offload the high-level tasks over Edge systems. The proposed architecture is validated in two experimental test cases using a quadrotor UAV.

Community detection is a key aspect of network analysis, as it allows for the identification of groups and patterns within a network. With the ever-increasing size of networks, it is crucial to have fast algorithms to analyze them efficiently. It is a modularity-based greedy algorithm that divides a network into disconnected communities better over several iterations. Even in big, dense networks, it is renowned for establishing high-quality communities. However it can be at least a factor of ten slower than community discovery techniques that rely on label-propagation, which are generally extremely fast but obtain communities of lower quality. The researchers have suggested a number of methods for parallelizing and improving the Louvain algorithm. To decide which strategy is generally the best fit and which parameter values produce the highest performance without compromising community quality, it is critical to assess the performance and accuracy of these existing approaches. As we implement the single-threaded and multi-threaded versions of the static Louvain algorithm in this report, we carefully examine the method's specifics, make the required tweaks and optimizations, and determine the right parameter values. The tolerance between each pass can be changed to adjust the method's performance. With an initial tolerance of 0.01 and a tolerance decline factor of 10, an asynchronous version of the algorithm produced the best results. Generally speaking, according to our findings, the approach is not well suited for shared-memory parallelism; however, one potential workaround is to break the graph into manageable chunks that can be independently executed and then merged back together.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司