亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network games are an important class of games that model agent interactions in networked systems, where players are situated at the nodes of a graph and their payoffs depend on the actions taken by their neighbors. We extend the classical framework by considering a game model where the strategies are positive semidefinite matrices having trace one. These (continuous) games can serve as a simple model of quantum strategic interactions. We focus on the zero-sum case, where the sum of all players' payoffs is equal to zero. We establish that in this class of games, Nash equilibria can be characterized as the projection of a spectrahedron, that is, the feasible region of a semidefinite program. Furthermore, we demonstrate that determining whether a game is a semidefinite network game is equivalent to deciding if the value of a semidefinite program is zero. Beyond the zero-sum case, we characterize Nash equilibria as the solutions of a semidefinite linear complementarity problem.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Aircraft are composed of many electronic systems: sensors, displays, navigation equipment and communication elements. These elements require a reliable interconnection, which is a major challenge for communication networks as high reliability and predictability requirements must be verified for safe operation. In addition, their verification via hardware deployments is limited because these are costly and make difficult to try different architectures and configurations, thus delaying the design and development in this area. Therefore, verification at early stages in the design process is of great importance and must be supported by simulation. In this context, this work presents an event-driven link level framework and simulator for the validation of avionics networks. The presented tool supports communication protocols such as Avionics Full-Duplex Switched Ethernet (AFDX), which is a common protocol in avionics, as well as Ethernet, used with static routing. Alsa, accurate results are facilitated by the simulator through the utilization of realistic models for the different devices. The proposed platform is evaluated in Clean Sky's Disruptive Cockpit for Large Passenger Aircraft architecture scenario showing capabilities of the simulator. The speed of the verification is a key factor in its application, so the computational cost is analysed, proving that the execution time is linearly dependent on the number of messages sent.

As advancements in artificial intelligence (AI) propel progress in the life sciences, they may also enable the weaponisation and misuse of biological agents. This article differentiates two classes of AI tools that could pose such biosecurity risks: large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT-4 and its successors, might provide dual-use information and thus remove some barriers encountered by historical biological weapons efforts. As LLMs are turned into multi-modal lab assistants and autonomous science tools, this will increase their ability to support non-experts in performing laboratory work. Thus, LLMs may in particular lower barriers to biological misuse. In contrast, BDTs will expand the capabilities of sophisticated actors. Concretely, BDTs may enable the creation of pandemic pathogens substantially worse than anything seen to date and could enable forms of more predictable and targeted biological weapons. In combination, the convergence of LLMs and BDTs could raise the ceiling of harm from biological agents and could make them broadly accessible. A range of interventions would help to manage risks. Independent pre-release evaluations could help understand the capabilities of models and the effectiveness of safeguards. Options for differentiated access to such tools should be carefully weighed with the benefits of openly releasing systems. Lastly, essential for mitigating risks will be universal and enhanced screening of gene synthesis products.

Speech bandwidth extension (BWE) has demonstrated promising performance in enhancing the perceptual speech quality in real communication systems. Most existing BWE researches primarily focus on fixed upsampling ratios, disregarding the fact that the effective bandwidth of captured audio may fluctuate frequently due to various capturing devices and transmission conditions. In this paper, we propose a novel streaming adaptive bandwidth extension solution dubbed BAE-Net, which is suitable to handle the low-resolution speech with unknown and varying effective bandwidth. To address the challenges of recovering both the high-frequency magnitude and phase speech content blindly, we devise a dual-stream architecture that incorporates the magnitude inpainting and phase refinement. For potential applications on edge devices, this paper also introduces BAE-NET-lite, which is a lightweight, streaming and efficient framework. Quantitative results demonstrate the superiority of BAE-Net in terms of both performance and computational efficiency when compared with existing state-of-the-art BWE methods.

We extend the notion of boycotts in cooperative games from one-on-one boycotts between single players to boycotts between coalitions. We prove that convex game offer a proper setting for studying the impact of boycotts. Boycotts have a heterogenous effect. Individual players that are targeted by many-on-one boycotts suffer most, while non-participating players may actually benefit from a boycott.

To mitigate global warming, greenhouse gas sources need to be resolved at a high spatial resolution and monitored in time to ensure the reduction and ultimately elimination of the pollution source. However, the complexity of computation in resolving high-resolution wind fields left the simulations impractical to test different time lengths and model configurations. This study presents a preliminary development of a physics-informed super-resolution (SR) generative adversarial network (GAN) that super-resolves the three-dimensional (3D) low-resolution wind fields by upscaling x9 times. We develop a pixel-wise self-attention (PWA) module that learns 3D weather dynamics via a self-attention computation followed by a 2D convolution. We also employ a loss term that regularizes the self-attention map during pretraining, capturing the vertical convection process from input wind data. The new PWA SR-GAN shows the high-fidelity super-resolved 3D wind data, learns a wind structure at the high-frequency domain, and reduces the computational cost of a high-resolution wind simulation by x89.7 times.

Securing dynamic networks against adversarial actions is challenging because of the need to anticipate and counter strategic disruptions by adversarial entities within complex network structures. Traditional game-theoretic models, while insightful, often fail to model the unpredictability and constraints of real-world threat assessment scenarios. We refine sabotage games to reflect the realistic limitations of the saboteur and the network operator. By transforming sabotage games into reachability problems, our approach allows applying existing computational solutions to model realistic restrictions on attackers and defenders within the game. Modifying sabotage games into dynamic network security problems successfully captures the nuanced interplay of strategy and uncertainty in dynamic network security. Theoretically, we extend sabotage games to model network security contexts and thoroughly explore if the additional restrictions raise their computational complexity, often the bottleneck of game theory in practical contexts. Practically, this research sets the stage for actionable insights for developing robust defense mechanisms by understanding what risks to mitigate in dynamically changing networks under threat.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司