亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quick rise of emerging technologies like spectrally efficient multicarrier with a higher order modulation and bandwidth variable wavelength selective switches have caused a shift of the optical network architecture from fixed to the flexible elastic optical network (EON), in terms of bit rate, center frequency spacing, modulation format, and optical reach. By using bandwidth-variable transceivers, colorless flexible-grid reconfigurable optical add-drop multiplexers (ROADM), as well as a choice of different optical source types, operators can provide a range of service types and improve network efficiency. Implementation of the EON network requires careful consideration, especially in terms of the ROADM structure to achieve optimal performance. We propose a low-cost ROADM structure with an order-based connection method that includes a high degree with a blocking probability of less than 10-4. Then, we applied the new design of ROADM in EON that transported 1 Tb/s. In the final step, we conclude that our system accommodated 20 percent more traffic demand over an average of the low-rate wavelength approach.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

This work proposes to use evolutionary computation as a pathway to allow a new perspective on the modeling of energy expenditure and recovery of an individual athlete during exercise. We revisit a theoretical concept called the "three component hydraulic model" which is designed to simulate metabolic systems during exercise and which is able to address recently highlighted shortcomings of currently applied performance models. This hydraulic model has not been entirely validated on individual athletes because it depends on physiological measures that cannot be acquired in the required precision or quantity. This paper introduces a generalized interpretation and formalization of the three component hydraulic model that removes its ties to concrete metabolic measures and allows to use evolutionary computation to fit its parameters to an athlete.

This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks -- 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output, etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.

Efficient use of spectral resources will be an important aspect of converged access network deployment. This work analyzes the performance of variable bandwidth Analog Radio-over-Fiber signals transmitted in the unfilled spectral spaces of telecom-grade ROADM channels dedicated for coherent signals transmission over the OpenIreland testbed.

Intelligent reflecting surface (IRS) has recently emerged as a promising technology for beyond fifth-generation (B5G) and 6G networks conceived from metamaterials that smartly tunes the signal reflections via a large number of low-cost passive reflecting elements. However, the IRS-assisted communication model and the optimization of available resources needs to be improved further for more efficient communications. This paper investigates the enhancement of received power at the user end in an IRS assisted wireless communication by jointly optimizing the phase shifts at the IRS elements and its location. Employing the conventional Friss transmission model, the relationship between the transmitted power and reflected power is established. The expression of received power incorporates the free space loss, reflection loss factor, physical dimension of the IRS panel, and radiation pattern of the transmit signal. Also, the expression of reflection coefficient of IRS panel is obtained by exploiting the existing data of radar communications. Initially exploring a single IRS element within a two-ray reflection model, we extend it to a more complex multi-ray reflection model with multiple IRS elements in 3D Cartesian space. The received power expression is derived in a more tractable form, then, it is maximized by jointly optimizing the underlying underlying variables, the IRS location and the phase shifts. To realize the joint optimization of underlying variables, first, the phase shifts of the IRS elements are optimized to achieve constructive interference of received signal components at the user. Subsequently, the location of the IRS is optimized at the obtained optimal phase shifts. Numerical insights and performance comparison reveal that joint optimization leads to a substantial 37% enhancement in received power compared to the closest competitive benchmark scheme.

Recently, denoising diffusion probabilistic models (DDPM) have been applied to image segmentation by generating segmentation masks conditioned on images, while the applications were mainly limited to 2D networks without exploiting potential benefits from the 3D formulation. In this work, we studied the DDPM-based segmentation model for 3D multiclass segmentation on two large multiclass data sets (prostate MR and abdominal CT). We observed that the difference between training and test methods led to inferior performance for existing DDPM methods. To mitigate the inconsistency, we proposed a recycling method which generated corrupted masks based on the model's prediction at a previous time step instead of using ground truth. The proposed method achieved statistically significantly improved performance compared to existing DDPMs, independent of a number of other techniques for reducing train-test discrepancy, including performing mask prediction, using Dice loss, and reducing the number of diffusion time steps during training. The performance of diffusion models was also competitive and visually similar to non-diffusion-based U-net, within the same compute budget. The JAX-based diffusion framework has been released at //github.com/mathpluscode/ImgX-DiffSeg.

We design a Universal Automatic Elbow Detector (UAED) for deciding the effective number of components in model selection problems. The relationship with the information criteria widely employed in the literature is also discussed. The proposed UAED does not require the knowledge of a likelihood function and can be easily applied in diverse applications, such as regression and classification, feature and/or order selection, clustering, and dimension reduction. Several experiments involving synthetic and real data show the advantages of the proposed scheme with benchmark techniques in the literature.

Unsupervised representation learning has recently helped automatic speech recognition (ASR) to tackle tasks with limited labeled data. Following this, hardware limitations and applications give rise to the question how to take advantage of large pre-trained models efficiently and reduce their complexity. In this work, we study a challenging low resource conversational telephony speech corpus from the medical domain in Vietnamese and German. We show the benefits of using unsupervised techniques beyond simple fine-tuning of large pre-trained models, discuss how to adapt them to a practical telephony task including bandwidth transfer and investigate different data conditions for pre-training and fine-tuning. We outperform the project baselines by 22% relative using pretraining techniques. Further gains of 29% can be achieved by refinements of architecture and training and 6% by adding 0.8 h of in-domain adaptation data.

Multidimensional constellation shaping of up to 32 dimensions with different spectral efficiencies are compared through AWGN and fiber-optic simulations. The results show that no constellation is universal and the balance of required and effective SNRs should be jointly considered for the specific optical transmission scenario.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司