We consider the measurement model $Y = AX,$ where $X$ and, hence, $Y$ are random variables and $A$ is an a priori known tall matrix. At each time instance, a sample of one of $Y$'s coordinates is available, and the goal is to estimate $\mu := \mathbb{E}[X]$ via these samples. However, the challenge is that a small but unknown subset of $Y$'s coordinates are controlled by adversaries with infinite power: they can return any real number each time they are queried for a sample. For such an adversarial setting, we propose the first asynchronous online algorithm that converges to $\mu$ almost surely. We prove this result using a novel differential inclusion based two-timescale analysis. Two key highlights of our proof include: (a) the use of a novel Lyapunov function for showing that $\mu$ is the unique global attractor for our algorithm's limiting dynamics, and (b) the use of martingale and stopping time theory to show that our algorithm's iterates are almost surely bounded.
Inferring causal structures from time series data is the central interest of many scientific inquiries. A major barrier to such inference is the problem of subsampling, i.e., the frequency of measurement is much lower than that of causal influence. To overcome this problem, numerous methods have been proposed, yet either was limited to the linear case or failed to achieve identifiability. In this paper, we propose a constraint-based algorithm that can identify the entire causal structure from subsampled time series, without any parametric constraint. Our observation is that the challenge of subsampling arises mainly from hidden variables at the unobserved time steps. Meanwhile, every hidden variable has an observed proxy, which is essentially itself at some observable time in the future, benefiting from the temporal structure. Based on these, we can leverage the proxies to remove the bias induced by the hidden variables and hence achieve identifiability. Following this intuition, we propose a proxy-based causal discovery algorithm. Our algorithm is nonparametric and can achieve full causal identification. Theoretical advantages are reflected in synthetic and real-world experiments.
In this paper, we investigate the problem of offline reinforcement learning with human feedback where feedback is available in the form of preference between trajectory pairs rather than explicit rewards. Our proposed algorithm consists of two main steps: (1) estimate the implicit reward using Maximum Likelihood Estimation (MLE) with general function approximation from offline data and (2) solve a distributionally robust planning problem over a confidence set around the MLE. We consider the general reward setting where the reward can be defined over the whole trajectory and provide a novel guarantee that allows us to learn any target policy with a polynomial number of samples, as long as the target policy is covered by the offline data. This guarantee is the first of its kind with general function approximation. To measure the coverage of the target policy, we introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability coefficient. We also establish lower bounds that highlight the necessity of such concentrability and the difference from standard RL, where state-action-wise rewards are directly observed. We further extend and analyze our algorithm when the feedback is given over action pairs.
We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.
We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.
Transfer learning is a popular paradigm for utilizing existing knowledge from previous learning tasks to improve the performance of new ones. It has enjoyed numerous empirical successes and inspired a growing number of theoretical studies. This paper addresses the feasibility issue of transfer learning. It begins by establishing the necessary mathematical concepts and constructing a mathematical framework for transfer learning. It then identifies and formulates the three-step transfer learning procedure as an optimization problem, allowing for the resolution of the feasibility issue. Importantly, it demonstrates that under certain technical conditions, such as appropriate choice of loss functions and data sets, an optimal procedure for transfer learning exists. This study of the feasibility issue brings additional insights into various transfer learning problems. It sheds light on the impact of feature augmentation on model performance, explores potential extensions of domain adaptation, and examines the feasibility of efficient feature extractor transfer in image classification.
To date, there has been little concrete practical advice about how to ensure that diversity and inclusion considerations should be embedded within both specific Artificial Intelligence (AI) systems and the larger global AI ecosystem. In this chapter, we present a clear definition of diversity and inclusion in AI, one which positions this concept within an evolving and holistic ecosystem. We use this definition and conceptual framing to present a set of practical guidelines primarily aimed at AI technologists, data scientists and project leaders.
Time series often reflect variation associated with other related variables. Controlling for the effect of these variables is useful when modeling or analysing the time series. We introduce a novel approach to normalize time series data conditional on a set of covariates. We do this by modeling the conditional mean and the conditional variance of the time series with generalized additive models using a set of covariates. The conditional mean and variance are then used to normalize the time series. We illustrate the use of conditionally normalized series using two applications involving river network data. First, we show how these normalized time series can be used to impute missing values in the data. Second, we show how the normalized series can be used to estimate the conditional autocorrelation function and conditional cross-correlation functions via additive models. Finally we use the conditional cross-correlations to estimate the time it takes water to flow between two locations in a river network.
This article describes a numerical method based on the dual reciprocity boundary elements method (DRBEM) for solving some well-known nonlinear parabolic partial differential equations (PDEs). The equations include the classic and generalized Fisher's equations, Allen-Cahn equation, Newell-Whithead equation, Fitz-HughNagumo equation and generalized Fitz-HughNagumo equation with time-dependent coefficients. The concept of the dual reciprocity is used to convert the domain integral to the boundary that leads to an integration free method. We employ the time stepping scheme to approximate the time derivative, and the linear radial basis functions (RBFs) are used as approximate functions in presented method. The nonlinear terms are treated iteratively within each time step. The developed formulation is verified in some numerical test examples. The results of numerical experiments are compared with analytical solution to confirm the accuracy and efficiency of the presented scheme.
Model selection is a strategy aimed at creating accurate and robust models. A key challenge in designing these algorithms is identifying the optimal model for classifying any particular input sample. This paper addresses this challenge and proposes a novel framework for differentiable model selection integrating machine learning and combinatorial optimization. The framework is tailored for ensemble learning, a strategy that combines the outputs of individually pre-trained models, and learns to select appropriate ensemble members for a particular input sample by transforming the ensemble learning task into a differentiable selection program trained end-to-end within the ensemble learning model. Tested on various tasks, the proposed framework demonstrates its versatility and effectiveness, outperforming conventional and advanced consensus rules across a variety of settings and learning tasks.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.