亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The plant community composition is an essential indicator of environmental changes and is, for this reason, usually analyzed in ecological field studies in terms of the so-called plant cover. The manual acquisition of this kind of data is time-consuming, laborious, and prone to human error. Automated camera systems can collect high-resolution images of the surveyed vegetation plots at a high frequency. In combination with subsequent algorithmic analysis, it is possible to objectively extract information on plant community composition quickly and with little human effort. An automated camera system can easily collect the large amounts of image data necessary to train a Deep Learning system for automatic analysis. However, due to the amount of work required to annotate vegetation images with plant cover data, only few labeled samples are available. As automated camera systems can collect many pictures without labels, we introduce an approach to interpolate the sparse labels in the collected vegetation plot time series down to the intermediate dense and unlabeled images to artificially increase our training dataset to seven times its original size. Moreover, we introduce a new method we call Monte-Carlo Cropping. This approach trains on a collection of cropped parts of the training images to deal with high-resolution images efficiently, implicitly augment the training images, and speed up training. We evaluate both approaches on a plant cover dataset containing images of herbaceous plant communities and find that our methods lead to improvements in the species, community, and segmentation metrics investigated.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

The provision of social care applications is crucial for elderly people to improve their quality of life and enables operators to provide early interventions. Accurate predictions of user dropouts in healthy ageing applications are essential since they are directly related to individual health statuses. Machine Learning (ML) algorithms have enabled highly accurate predictions, outperforming traditional statistical methods that struggle to cope with individual patterns. However, ML requires a substantial amount of data for training, which is challenging due to the presence of personal identifiable information (PII) and the fragmentation posed by regulations. In this paper, we present a federated machine learning (FML) approach that minimizes privacy concerns and enables distributed training, without transferring individual data. We employ collaborative training by considering individuals and organizations under FML, which models both cross-device and cross-silo learning scenarios. Our approach is evaluated on a real-world dataset with non-independent and identically distributed (non-iid) data among clients, class imbalance and label ambiguity. Our results show that data selection and class imbalance handling techniques significantly improve the predictive accuracy of models trained under FML, demonstrating comparable or superior predictive performance than traditional ML models.

In addition to maximizing the total revenue, decision-makers in lots of industries would like to guarantee balanced consumption across different resources. For instance, in the retailing industry, ensuring a balanced consumption of resources from different suppliers enhances fairness and helps main a healthy channel relationship; in the cloud computing industry, resource-consumption balance helps increase customer satisfaction and reduce operational costs. Motivated by these practical needs, this paper studies the price-based network revenue management (NRM) problem with both demand learning and fair resource-consumption balancing. We introduce the regularized revenue, i.e., the total revenue with a balancing regularization, as our objective to incorporate fair resource-consumption balancing into the revenue maximization goal. We propose a primal-dual-type online policy with the Upper-Confidence-Bound (UCB) demand learning method to maximize the regularized revenue. We adopt several innovative techniques to make our algorithm a unified and computationally efficient framework for the continuous price set and a wide class of balancing regularizers. Our algorithm achieves a worst-case regret of $\widetilde O(N^{5/2}\sqrt{T})$, where $N$ denotes the number of products and $T$ denotes the number of time periods. Numerical experiments in a few NRM examples demonstrate the effectiveness of our algorithm in simultaneously achieving revenue maximization and fair resource-consumption balancing

Semantic reasoning and dynamic planning capabilities are crucial for an autonomous agent to perform complex navigation tasks in unknown environments. It requires a large amount of common-sense knowledge, that humans possess, to succeed in these tasks. We present SayNav, a new approach that leverages human knowledge from Large Language Models (LLMs) for efficient generalization to complex navigation tasks in unknown large-scale environments. SayNav uses a novel grounding mechanism, that incrementally builds a 3D scene graph of the explored environment as inputs to LLMs, for generating feasible and contextually appropriate high-level plans for navigation. The LLM-generated plan is then executed by a pre-trained low-level planner, that treats each planned step as a short-distance point-goal navigation sub-task. SayNav dynamically generates step-by-step instructions during navigation and continuously refines future steps based on newly perceived information. We evaluate SayNav on a new multi-object navigation task, that requires the agent to utilize a massive amount of human knowledge to efficiently search multiple different objects in an unknown environment. SayNav outperforms an oracle based Point-nav baseline, achieving a success rate of 95.35% (vs 56.06% for the baseline), under the ideal settings on this task, highlighting its ability to generate dynamic plans for successfully locating objects in large-scale new environments.

Pretraining molecular representations from large unlabeled data is essential for molecular property prediction due to the high cost of obtaining ground-truth labels. While there exist various 2D graph-based molecular pretraining approaches, these methods struggle to show statistically significant gains in predictive performance. Recent work have thus instead proposed 3D conformer-based pretraining under the task of denoising, which led to promising results. During downstream finetuning, however, models trained with 3D conformers require accurate atom-coordinates of previously unseen molecules, which are computationally expensive to acquire at scale. In light of this limitation, we propose D&D, a self-supervised molecular representation learning framework that pretrains a 2D graph encoder by distilling representations from a 3D denoiser. With denoising followed by cross-modal knowledge distillation, our approach enjoys use of knowledge obtained from denoising as well as painless application to downstream tasks with no access to accurate conformers. Experiments on real-world molecular property prediction datasets show that the graph encoder trained via D&D can infer 3D information based on the 2D graph and shows superior performance and label-efficiency against other baselines.

Forecasting natural gas consumption, considering seasonality and trends, is crucial in planning its supply and consumption and optimizing the cost of obtaining it, mainly by industrial entities. However, in times of threats to its supply, it is also a critical element that guarantees the supply of this raw material to meet individual consumers' needs, ensuring society's energy security. This article introduces a novel multistep ahead forecasting of natural gas consumption with change point detection integration for model collection selection with continual learning capabilities using data stream processing. The performance of the forecasting models based on the proposed approach is evaluated in a complex real-world use case of natural gas consumption forecasting. We employed Hoeffding tree predictors as forecasting models and the Pruned Exact Linear Time (PELT) algorithm for the change point detection procedure. The change point detection integration enables selecting a different model collection for successive time frames. Thus, three model collection selection procedures (with and without an error feedback loop) are defined and evaluated for forecasting scenarios with various densities of detected change points. These models were compared with change point agnostic baseline approaches. Our experiments show that fewer change points result in a lower forecasting error regardless of the model collection selection procedure employed. Also, simpler model collection selection procedures omitting forecasting error feedback leads to more robust forecasting models suitable for continual learning tasks.

Object detectors are at the heart of many semi- and fully autonomous decision systems and are poised to become even more indispensable. They are, however, still lacking in accessibility and can sometimes produce unreliable predictions. Especially concerning in this regard are the -- essentially hand-crafted -- non-maximum suppression algorithms that lead to an obfuscated prediction process and biased confidence estimates. We show that we can eliminate classic NMS-style post-processing by using IoU-aware calibration. IoU-aware calibration is a conditional Beta calibration; this makes it parallelizable with no hyper-parameters. Instead of arbitrary cutoffs or discounts, it implicitly accounts for the likelihood of each detection being a duplicate and adjusts the confidence score accordingly, resulting in empirically based precision estimates for each detection. Our extensive experiments on diverse detection architectures show that the proposed IoU-aware calibration can successfully model duplicate detections and improve calibration. Compared to the standard sequential NMS and calibration approach, our joint modeling can deliver performance gains over the best NMS-based alternative while producing consistently better-calibrated confidence predictions with less complexity. The \hyperlink{//github.com/Blueblue4/IoU-AwareCalibration}{code} for all our experiments is publicly available.

In surgical computer vision applications, obtaining labeled training data is challenging due to data-privacy concerns and the need for expert annotation. Unpaired image-to-image translation techniques have been explored to automatically generate large annotated datasets by translating synthetic images to the realistic domain. However, preserving the structure and semantic consistency between the input and translated images presents significant challenges, mainly when there is a distributional mismatch in the semantic characteristics of the domains. This study empirically investigates unpaired image translation methods for generating suitable data in surgical applications, explicitly focusing on semantic consistency. We extensively evaluate various state-of-the-art image translation models on two challenging surgical datasets and downstream semantic segmentation tasks. We find that a simple combination of structural-similarity loss and contrastive learning yields the most promising results. Quantitatively, we show that the data generated with this approach yields higher semantic consistency and can be used more effectively as training data.

For an autonomous vehicle it is essential to observe the ongoing dynamics of a scene and consequently predict imminent future scenarios to ensure safety to itself and others. This can be done using different sensors and modalities. In this paper we investigate the usage of optical flow for predicting future semantic segmentations. To do so we propose a model that forecasts flow fields autoregressively. Such predictions are then used to guide the inference of a learned warping function that moves instance segmentations on to future frames. Results on the Cityscapes dataset demonstrate the effectiveness of optical-flow methods.

In social networks, the discovery of community structures has received considerable attention as a fundamental problem in various network analysis tasks. However, due to privacy concerns or access restrictions, the network structure is often unknown, thereby rendering established community detection approaches ineffective without costly network topology acquisition. To tackle this challenge, we present META-CODE, a unified framework for detecting overlapping communities in networks with unknown topology via exploratory learning aided by easy-to-collect node metadata. Specifically, META-CODE consists of three iterative steps in addition to the initial network inference step: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community-affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network. Through extensive experiments on five real-world datasets including two large networks, we demonstrated: (a) the superiority of META-CODE over benchmark community detection methods, achieving remarkable gains up to 151.27% compared to the best existing competitor, (b) the impact of each module in META-CODE, (c) the effectiveness of node queries in META-CODE based on empirical evaluations and theoretical findings, (d) the convergence of the inferred network, and (e) the computational efficiency of META-CODE.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

北京阿比特科技有限公司