亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prior to November of 2022, the topic of synthetic media was largely buried within academic journals, constrained to conversations about national security, and often fundamentally misunderstood. The release of ChatGPT, however, has accelerated discourse on the societal impacts of synthetic media. This study first highlights several gaps within existing literature on synthetic media, structuring the impact potential and limitations of synthetic media threats within a theoretical framework. Second, it identifies financial information environments as prime candidates for future disruption via synthetic text modalities, proposing an experimental survey for measuring the influential power of synthetic financial text on global investment communities. Rather than merely assessing the ability of survey participants to distinguish genuine from synthetic text, the experiment contained within this study measures synthetic media influence by observing its ability to manipulate belief via a series of behavioral variables. The results indicate that synthetic text can significantly shift investor sentiment away from what it might otherwise have been under truthful information conditions. Furthermore, synthetic financial text demonstrated a unique ability to "convert" investors, inspiring extreme changes in outlook about a company compared to genuine financial texts. This trend should inspire concern within the global financial community, particularly given the historical vulnerability of equity markets to investor sentiment shocks.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 線性的 · CASE · Analysis · MoDELS ·
2023 年 8 月 1 日

With the development of new sensors and monitoring devices, more sources of data become available to be used as inputs for machine learning models. These can on the one hand help to improve the accuracy of a model. On the other hand however, combining these new inputs with historical data remains a challenge that has not yet been studied in enough detail. In this work, we propose a transfer-learning algorithm that combines the new and the historical data, that is especially beneficial when the new data is scarce. We focus the approach on the linear regression case, which allows us to conduct a rigorous theoretical study on the benefits of the approach. We show that our approach is robust against negative transfer-learning, and we confirm this result empirically with real and simulated data.

This white paper presents our work on SurveyLM, a platform for analyzing augmented language models' (ALMs) emergent alignment behaviors through their dynamically evolving attitude and value perspectives in complex social contexts. Social Artificial Intelligence (AI) systems, like ALMs, often function within nuanced social scenarios where there is no singular correct response, or where an answer is heavily dependent on contextual factors, thus necessitating an in-depth understanding of their alignment dynamics. To address this, we apply survey and experimental methodologies, traditionally used in studying social behaviors, to evaluate ALMs systematically, thus providing unprecedented insights into their alignment and emergent behaviors. Moreover, the SurveyLM platform leverages the ALMs' own feedback to enhance survey and experiment designs, exploiting an underutilized aspect of ALMs, which accelerates the development and testing of high-quality survey frameworks while conserving resources. Through SurveyLM, we aim to shed light on factors influencing ALMs' emergent behaviors, facilitate their alignment with human intentions and expectations, and thereby contributed to the responsible development and deployment of advanced social AI systems. This white paper underscores the platform's potential to deliver robust results, highlighting its significance to alignment research and its implications for future social AI systems.

For the performance modeling of power converters, the mainstream approaches are essentially knowledge-based, suffering from heavy manpower burden and low modeling accuracy. Recent emerging data-driven techniques greatly relieve human reliance by automatic modeling from simulation data. However, model discrepancy may occur due to unmodeled parasitics, deficient thermal and magnetic models, unpredictable ambient conditions, etc. These inaccurate data-driven models based on pure simulation cannot represent the practical performance in physical world, hindering their applications in power converter modeling. To alleviate model discrepancy and improve accuracy in practice, this paper proposes a novel data-driven modeling with experimental augmentation (D2EA), leveraging both simulation data and experimental data. In D2EA, simulation data aims to establish basic functional landscape, and experimental data focuses on matching actual performance in real world. The D2EA approach is instantiated for the efficiency optimization of a hybrid modulation for neutral-point-clamped dual-active-bridge (NPC-DAB) converter. The proposed D2EA approach realizes 99.92% efficiency modeling accuracy, and its feasibility is comprehensively validated in 2-kW hardware experiments, where the peak efficiency of 98.45% is attained. Overall, D2EA is data-light and can achieve highly accurate and highly practical data-driven models in one shot, and it is scalable to other applications, effortlessly.

Many financial jobs rely on news to learn about causal events in the past and present, to make informed decisions and predictions about the future. With the ever-increasing amount of news available online, there is a need to automate the extraction of causal events from unstructured texts. In this work, we propose a methodology to construct causal knowledge graphs (KGs) from news using two steps: (1) Extraction of Causal Relations, and (2) Argument Clustering and Representation into KG. We aim to build graphs that emphasize on recall, precision and interpretability. For extraction, although many earlier works already construct causal KGs from text, most adopt rudimentary pattern-based methods. We close this gap by using the latest BERT-based extraction models alongside pattern-based ones. As a result, we achieved a high recall, while still maintaining a high precision. For clustering, we utilized a topic modelling approach to cluster our arguments, so as to increase the connectivity of our graph. As a result, instead of 15,686 disconnected subgraphs, we were able to obtain 1 connected graph that enables users to infer more causal relationships from. Our final KG effectively captures and conveys causal relationships, validated through experiments, multiple use cases and user feedback.

Social platforms have emerged as a crucial platform for disseminating and discussing information about real-life events, which offers an excellent opportunity for early detection of newsworthy events. However, most existing approaches for event detection solely exploit keyword burstiness or network structures to detect hot events. Thus, they often fail to identify emerging social events before reaching a trending state regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, ambiguity, and irregular language, as well as variation in aspects of opinions. Moreover, learning the evolving characteristics of the events utilizing limited contextual knowledge is almost infeasible for machine learning models. To address these problems, in this paper, we propose a framework that exploits the lexical, semantic, and contextual representations of streaming social data. In particular, we leverage contextual knowledge to detect semantically related tweets in their earliest emergence and enhance the quality of produced clusters. We next produce a cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating the effectiveness of the proposed framework in detecting and distinguishing social events.

Cyber-physical systems (CPS) offer immense optimization potential for manufacturing processes through the availability of multivariate time series data of actors and sensors. Based on automated analysis software, the deployment of adaptive and responsive measures is possible for time series data. Due to the complex and dynamic nature of modern manufacturing, analysis and modeling often cannot be entirely automated. Even machine- or deep learning approaches often depend on a priori expert knowledge and labelling. In this paper, an information-based data preprocessing approach is proposed. By applying statistical methods including variance and correlation analysis, an approximation of the sampling rate in event-based systems and the utilization of spectral analysis, knowledge about the underlying manufacturing processes can be gained prior to modeling. The paper presents, how statistical analysis enables the pruning of a dataset's least important features and how the sampling rate approximation approach sets the base for further data analysis and modeling. The data's underlying periodicity, originating from the cyclic nature of an automated manufacturing process, will be detected by utilizing the fast Fourier transform. This information-based preprocessing method will then be validated for process time series data of cyber-physical systems' programmable logic controllers (PLC).

In order to model criminal networks for law enforcement purposes, a limited supply of data needs to be translated into validated agent-based models. What is missing in current criminological modelling is a systematic and transparent framework for modelers and domain experts that establishes a modelling procedure for computational criminal modelling that includes translating qualitative data into quantitative rules. For this, we propose FREIDA (Framework for Expert-Informed Data-driven Agent-based models). Throughout the paper, the criminal cocaine replacement model (CCRM) will be used as an example case to demonstrate the FREIDA methodology. For the CCRM, a criminal cocaine network in the Netherlands is being modelled where the kingpin node is being removed, the goal being for the remaining agents to reorganize after the disruption and return the network into a stable state. Qualitative data sources such as case files, literature and interviews are translated into empirical laws, and combined with the quantitative sources such as databases form the three dimensions (environment, agents, behaviour) of a networked ABM. Four case files are being modelled and scored both for training as well as for validation scores to transition to the computational model and application phase respectively. In the last phase, iterative sensitivity analysis, uncertainty quantification and scenario testing eventually lead to a robust model that can help law enforcement plan their intervention strategies. Results indicate the need for flexible parameters as well as additional case file simulations to be performed.

Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司