亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hand-based interaction, such as using a handheld controller or making hand gestures, has been widely adopted as the primary method for interacting with both virtual reality (VR) and augmented reality (AR) head-mounted displays (HMDs). In contrast, hands-free interaction avoids the need for users' hands and although it can afford additional benefits, there has been limited research in exploring and evaluating hands-free techniques for these HMDs. As VR HMDs become ubiquitous, people will need to do text editing, which requires selecting text segments. Similar to hands-free interaction, text selection is underexplored. This research focuses on both, text selection via hands-free interaction. Our exploration involves a user study with 24 participants to investigate the performance, user experience, and workload of three hands-free selection mechanisms (Dwell, Blink, Voice) to complement head-based pointing. Results indicate that Blink outperforms Dwell and Voice in completion time. Users' subjective feedback also shows that Blink is the preferred technique for text selection. This work is the first to explore hands-free interaction for text selection in VR HMDs. Our results provide a solid platform for further research in this important area.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 匯聚 · Learning · 穩健性 · 模態 ·
2022 年 10 月 26 日

It has already been observed that audio-visual embedding is more robust than uni-modality embedding for person verification. Here, we proposed a novel audio-visual strategy that considers aggregators from a fusion perspective. First, we introduced weight-enhanced attentive statistics pooling for the first time in face verification. We find that a strong correlation exists between modalities during pooling, so joint attentive pooling is proposed which contains cycle consistency to learn the implicit inter-frame weight. Finally, each modality is fused with a gated attention mechanism to gain robust audio-visual embedding. All the proposed models are trained on the VoxCeleb2 dev dataset and the best system obtains 0.18%, 0.27%, and 0.49% EER on three official trial lists of VoxCeleb1 respectively, which is to our knowledge the best-published results for person verification.

Image-to-text tasks, such as open-ended image captioning and controllable image description, have received extensive attention for decades. Here, we further advance this line of work by presenting Visual Spatial Description (VSD), a new perspective for image-to-text toward spatial semantics. Given an image and two objects inside it, VSD aims to produce one description focusing on the spatial perspective between the two objects. Accordingly, we manually annotate a dataset to facilitate the investigation of the newly-introduced task and build several benchmark encoder-decoder models by using VL-BART and VL-T5 as backbones. In addition, we investigate pipeline and joint end-to-end architectures for incorporating visual spatial relationship classification (VSRC) information into our model. Finally, we conduct experiments on our benchmark dataset to evaluate all our models. Results show that our models are impressive, providing accurate and human-like spatial-oriented text descriptions. Meanwhile, VSRC has great potential for VSD, and the joint end-to-end architecture is the better choice for their integration. We make the dataset and codes public for research purposes.

Preoperative medical imaging is an essential part of surgical planning. The data from medical imaging devices, such as CT and MRI scanners, consist of stacks of 2D images in DICOM format. Conversely, advances in 3D data visualization provide further information by assembling cross-sections into 3D volumetric datasets. As Microsoft unveiled the HoloLens 2 (HL2), which is considered one of the best Mixed Reality (XR) headsets in the market, it promised to enhance visualization in 3D by providing an immersive experience to users. This paper introduces a prototype holographic XR DICOM Viewer for the 3D visualization of DICOM image sets on HL2 for surgical planning. We first developed a standalone graphical C++ engine using the native DirectX11 API and HLSL shaders. Based on that, the prototype further applies the OpenXR API for potential deployment on a wide range of devices from vendors across the XR spectrum. With native access to the device, our prototype unravels the limitation of hardware capabilities on HL2 for 3D volume rendering and interaction. Moreover, smartphones can act as input devices to provide another user interaction method by connecting to our server. In this paper, we present a holographic DICOM viewer for the HoloLens 2 and contribute (i) a prototype that renders the DICOM image stacks in real-time on HL2, (ii) three types of user interactions in XR, and (iii) a preliminary qualitative evaluation of our prototype.

Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository. Their adoption, however, is so far limited to tasks that can be reliably evaluated in an automatic manner. This work introduces GENIE, an extensible human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks. GENIE automatically posts leaderboard submissions to crowdsourcing platforms asking human annotators to evaluate them on various axes (e.g., correctness, conciseness, fluency) and compares their answers to various automatic metrics. We introduce several datasets in English to GENIE, representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension. We provide formal granular evaluation metrics and identify areas for future research. We make GENIE publicly available and hope that it will spur progress in language generation models as well as their automatic and manual evaluation.

One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the user's emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russell's Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the \'z, \b{eta}, \'z, and \'z\'z waves and High Order Crossing of the EEG signal.

The tasks of humor understanding and generation are challenging and subjective even for humans, requiring commonsense and real-world knowledge to master. Puns, in particular, add the challenge of fusing that knowledge with the ability to interpret lexical-semantic ambiguity. In this paper, we present the ExPUNations (ExPUN) dataset, in which we augment an existing dataset of puns with detailed crowdsourced annotations of keywords denoting the most distinctive words that make the text funny, pun explanations describing why the text is funny, and fine-grained funniness ratings. This is the first humor dataset with such extensive and fine-grained annotations specifically for puns. Based on these annotations, we propose two tasks: explanation generation to aid with pun classification and keyword-conditioned pun generation, to challenge the current state-of-the-art natural language understanding and generation models' ability to understand and generate humor. We showcase that the annotated keywords we collect are helpful for generating better novel humorous texts in human evaluation, and that our natural language explanations can be leveraged to improve both the accuracy and robustness of humor classifiers.

Contouring is an indispensable step in Radiotherapy (RT) treatment planning. However, today's contouring software is constrained to only work with a 2D display, which is less intuitive and requires high task loads. Virtual Reality (VR) has shown great potential in various specialties of healthcare and health sciences education due to the unique advantages of intuitive and natural interactions in immersive spaces. VR-based radiation oncology integration has also been advocated as a target healthcare application, allowing providers to directly interact with 3D medical structures. We present VRContour and investigate how to effectively bring contouring for radiation oncology into VR. Through an autobiographical iterative design, we defined three design spaces focused on contouring in VR with the support of a tracked tablet and VR stylus, and investigating dimensionality for information consumption and input (either 2D or 2D + 3D). Through a within-subject study (n = 8), we found that visualizations of 3D medical structures significantly increase precision, and reduce mental load, frustration, as well as overall contouring effort. Participants also agreed with the benefits of using such metaphors for learning purposes.

Generating realistic lip motion from audio to simulate speech production is critical for driving natural character animation. Previous research has shown that traditional metrics used to optimize and assess models for generating lip motion from speech are not a good indicator of subjective opinion of animation quality. Devising metrics that align with subjective opinion first requires understanding what impacts human perception of quality. In this work, we focus on the degree of articulation and run a series of experiments to study how articulation strength impacts human perception of lip motion accompanying speech. Specifically, we study how increasing under-articulated (dampened) and over-articulated (exaggerated) lip motion affects human perception of quality. We examine the impact of articulation strength on human perception when considering only lip motion, where viewers are presented with talking faces represented by landmarks, and in the context of embodied characters, where viewers are presented with photo-realistic videos. Our results show that viewers prefer over-articulated lip motion consistently more than under-articulated lip motion and that this preference generalizes across different speakers and embodiments.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司