亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Experiments require human decisions in the design process, which in turn are reformulated and summarized as inputs into a system (computational or otherwise) to generate the experimental design. I leverage this system to promote a language of experimental designs by proposing a novel computational framework, called "the grammar of experimental designs", to specify experimental designs based on an object-oriented programming system that declaratively encapsulates the experimental structure. The framework aims to engage human cognition by building experimental designs with modular functions that modify a targeted singular element of the experimental design object. The syntax and semantics of the framework are built upon consideration from multiple perspectives. While the core framework is language-agnostic, the framework is implemented in the `edibble` R-package. A range of examples is shown to demonstrate the utility of the framework.

相關內容

設(she)(she)計是對現(xian)有狀的一種(zhong)重新認(ren)識(shi)和打破重組的過程(cheng),設(she)(she)計讓(rang)一切變得(de)更美。

While self-supervised learning has improved anomaly detection in computer vision and natural language processing, it is unclear whether tabular data can benefit from it. This paper explores the limitations of self-supervision for tabular anomaly detection. We conduct several experiments spanning various pretext tasks on 26 benchmark datasets to understand why this is the case. Our results confirm representations derived from self-supervision do not improve tabular anomaly detection performance compared to using the raw representations of the data. We show this is due to neural networks introducing irrelevant features, which reduces the effectiveness of anomaly detectors. However, we demonstrate that using a subspace of the neural network's representation can recover performance.

The sequential composition of propositional logic programs has been recently introduced. This paper studies the sequential {\em decomposition} of programs by studying Green's relations $\mathcal{L,R,J}$ -- well-known in semigroup theory -- between programs. In a broader sense, this paper is a further step towards an algebraic theory of logic programming.

Telemanipulation has become a promising technology that combines human intelligence with robotic capabilities to perform tasks remotely. However, it faces several challenges such as insufficient transparency, low immersion, and limited feedback to the human operator. Moreover, the high cost of haptic interfaces is a major limitation for the application of telemanipulation in various fields, including elder care, where our research is focused. To address these challenges, this paper proposes the usage of nonlinear model predictive control for telemanipulation using low-cost virtual reality controllers, including multiple control goals in the objective function. The framework utilizes models for human input prediction and taskrelated models of the robot and the environment. The proposed framework is validated on an UR5e robot arm in the scenario of handling liquid without spilling. Further extensions of the framework such as pouring assistance and collision avoidance can easily be included.

Modern semiconductor manufacturing involves intricate production processes consisting of hundreds of operations, which can take several months from lot release to completion. The high-tech machines used in these processes are diverse, operate on individual wafers, lots, or batches in multiple stages, and necessitate product-specific setups and specialized maintenance procedures. This situation is different from traditional job-shop scheduling scenarios, which have less complex production processes and machines, and mainly focus on solving highly combinatorial but abstract scheduling problems. In this work, we address the scheduling of realistic semiconductor manufacturing processes by modeling their specific requirements using hybrid Answer Set Programming with difference logic, incorporating flexible machine processing, setup, batching and maintenance operations. Unlike existing methods that schedule semiconductor manufacturing processes locally with greedy heuristics or by independently optimizing specific machine group allocations, we examine the potentials of large-scale scheduling subject to multiple optimization objectives.

ASR systems have become increasingly widespread in recent years. However, their textual outputs often require post-processing tasks before they can be practically utilized. To address this issue, we draw inspiration from the multifaceted capabilities of LLMs and Whisper, and focus on integrating multiple ASR text processing tasks related to speech recognition into the ASR model. This integration not only shortens the multi-stage pipeline, but also prevents the propagation of cascading errors, resulting in direct generation of post-processed text. In this study, we focus on ASR-related processing tasks, including Contextual ASR and multiple ASR post processing tasks. To achieve this objective, we introduce the CPPF model, which offers a versatile and highly effective alternative to ASR processing. CPPF seamlessly integrates these tasks without any significant loss in recognition performance.

Quantum reinforcement learning (QRL) has emerged as a framework to solve sequential decision-making tasks, showcasing empirical quantum advantages. A notable development is through quantum recurrent neural networks (QRNNs) for memory-intensive tasks such as partially observable environments. However, QRL models incorporating QRNN encounter challenges such as inefficient training of QRL with QRNN, given that the computation of gradients in QRNN is both computationally expensive and time-consuming. This work presents a novel approach to address this challenge by constructing QRL agents utilizing QRNN-based reservoirs, specifically employing quantum long short-term memory (QLSTM). QLSTM parameters are randomly initialized and fixed without training. The model is trained using the asynchronous advantage actor-aritic (A3C) algorithm. Through numerical simulations, we validate the efficacy of our QLSTM-Reservoir RL framework. Its performance is assessed on standard benchmarks, demonstrating comparable results to a fully trained QLSTM RL model with identical architecture and training settings.

This study presents an importance sampling formulation based on adaptively relaxing parameters from the indicator function and/or the probability density function. The formulation embodies the prevalent mathematical concept of relaxing a complex problem into a sequence of progressively easier sub-problems. Due to the flexibility in constructing relaxation parameters, relaxation-based importance sampling provides a unified framework for various existing variance reduction techniques, such as subset simulation, sequential importance sampling, and annealed importance sampling. More crucially, the framework lays the foundation for creating new importance sampling strategies, tailoring to specific applications. To demonstrate this potential, two importance sampling strategies are proposed. The first strategy couples annealed importance sampling with subset simulation, focusing on low-dimensional problems. The second strategy aims to solve high-dimensional problems by leveraging spherical sampling and scaling techniques. Both methods are desirable for fragility analysis in performance-based engineering, as they can produce the entire fragility surface in a single run of the sampling algorithm. Three numerical examples, including a 1000-dimensional stochastic dynamic problem, are studied to demonstrate the proposed methods.

We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $l$ in an infinite heterogeneous correlated random medium, in a situation where the medium is only known in a box of diameter $L\gg l$ around the support of the charge. We show that the algorithm of Lu, Otto and Wang, suggesting optimal Dirichlet boundary conditions motivated by the multipole expansion of Bella, Giunti and Otto, still performs well in correlated media. With overwhelming probability, we obtain a convergence rate in terms of $l$, $L$ and the size of the correlations for which optimality is supported with numerical simulations. These estimates are provided for ensembles which satisfy a multi-scale logarithmic Sobolev inequality, where our main tool is an extension of the semi-group estimates established by the first author. As part of our strategy, we construct sub-linear second-order correctors in this correlated setting which is of independent interest.

We study scalable machine learning models for full event reconstruction in high-energy electron-positron collisions based on a highly granular detector simulation. Particle-flow (PF) reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters or hits. We compare a graph neural network and kernel-based transformer and demonstrate that both avoid quadratic memory allocation and computational cost while achieving realistic PF reconstruction. We show that hyperparameter tuning on a supercomputer significantly improves the physics performance of the models. We also demonstrate that the resulting model is highly portable across hardware processors, supporting Nvidia, AMD, and Intel Habana cards. Finally, we demonstrate that the model can be trained on highly granular inputs consisting of tracks and calorimeter hits, resulting in a competitive physics performance with the baseline. Datasets and software to reproduce the studies are published following the findable, accessible, interoperable, and reusable (FAIR) principles.

Calibration is a pivotal aspect in predictive modeling, as it ensures that the predictions closely correspond with what we observe empirically. The contemporary calibration framework, however, is predominantly focused on prediction models where the outcome is a binary variable. We extend the logistic calibration framework to the generalized calibration framework which includes all members of the exponential family of distributions. We propose two different methods to estimate the calibration curve in this setting, a generalized linear model and a non-parametric smoother. In addition, we define two measures that summarize the calibration performance. The generalized calibration slope which quantifies the amount of over- or underfitting and the generalized calibration slope or calibration-in-the-large that measures the agreement between the global empirical average and the average predicted value. We provide an illustrative example using a simulated data set and hereby show how we can utilize the generalized calibration framework to assess the calibration of different types of prediction models.

北京阿比特科技有限公司