We introduce OpenVoice, a versatile voice cloning approach that requires only a short audio clip from the reference speaker to replicate their voice and generate speech in multiple languages. OpenVoice represents a significant advancement in addressing the following open challenges in the field: 1) Flexible Voice Style Control. OpenVoice enables granular control over voice styles, including emotion, accent, rhythm, pauses, and intonation, in addition to replicating the tone color of the reference speaker. The voice styles are not directly copied from and constrained by the style of the reference speaker. Previous approaches lacked the ability to flexibly manipulate voice styles after cloning. 2) Zero-Shot Cross-Lingual Voice Cloning. OpenVoice achieves zero-shot cross-lingual voice cloning for languages not included in the massive-speaker training set. Unlike previous approaches, which typically require extensive massive-speaker multi-lingual (MSML) dataset for all languages, OpenVoice can clone voices into a new language without any massive-speaker training data for that language. OpenVoice is also computationally efficient, costing tens of times less than commercially available APIs that offer even inferior performance. To foster further research in the field, we have made the source code and trained model publicly accessible. We also provide qualitative results in our demo website. Prior to its public release, our internal version of OpenVoice was used tens of millions of times by users worldwide between May and October 2023, serving as the backend of MyShell.
This article motivates, describes, and presents the PBSCSR dataset for studying composer style recognition of piano sheet music. Our overarching goal was to create a dataset for studying composer style recognition that is "as accessible as MNIST and as challenging as ImageNet". To achieve this goal, we use a previously proposed feature representation of sheet music called a bootleg score, which encodes the position of noteheads relative to the staff lines. Using this representation, we sample fixed-length bootleg score fragments from piano sheet music images on IMSLP. The dataset itself contains 40,000 62x64 bootleg score images for a 9-way classification task, 100,000 62x64 bootleg score images for a 100-way classification task, and 29,310 unlabeled variable-length bootleg score images for pretraining. The labeled data is presented in a form that mirrors MNIST images, in order to make it extremely easy to visualize, manipulate, and train models in an efficient manner. Additionally, we include relevant metadata to allow access to the underlying raw sheet music images and other related data on IMSLP. We describe several research tasks that could be studied with the dataset, including variations of composer style recognition in a few-shot or zero-shot setting. For tasks that have previously proposed models, we release code and baseline results for future works to compare against. We also discuss open research questions that the PBSCSR data is especially well suited to facilitate research on and areas of fruitful exploration in future work.
Molecular Relational Learning (MRL), aiming to understand interactions between molecular pairs, plays a pivotal role in advancing biochemical research. Recently, the adoption of large language models (LLMs), known for their vast knowledge repositories and advanced logical inference capabilities, has emerged as a promising way for efficient and effective MRL. Despite their potential, these methods predominantly rely on the textual data, thus not fully harnessing the wealth of structural information inherent in molecular graphs. Moreover, the absence of a unified framework exacerbates the information underutilization, as it hinders the sharing of interaction rationale learned across diverse datasets. To address these challenges, this work proposes a novel LLM-based multi-modal framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory, termed MolTC, which can efficiently integrate rich graphical information of molecular pairs. For achieving a unified MRL, MolTC innovatively develops a dynamic parameter-sharing strategy for cross-dataset information exchange, and introduces a Multi-hierarchical CoT principle to refine training paradigm. Our experiments, conducted across twelve varied datasets involving over 4,000,000 molecular pairs, demonstrate the superiority of our method over current GNN and LLM-based baselines. On the top of that, a comprehensive Molecular Interactive Instructions dataset is constructed for the development of biochemical LLM, including our MolTC. Code is available at //github.com/MangoKiller/MolTC.
Perceptual video quality assessment plays a vital role in the field of video processing due to the existence of quality degradations introduced in various stages of video signal acquisition, compression, transmission and display. With the advancement of internet communication and cloud service technology, video content and traffic are growing exponentially, which further emphasizes the requirement for accurate and rapid assessment of video quality. Therefore, numerous subjective and objective video quality assessment studies have been conducted over the past two decades for both generic videos and specific videos such as streaming, user-generated content (UGC), 3D, virtual and augmented reality (VR and AR), high frame rate (HFR), audio-visual, etc. This survey provides an up-to-date and comprehensive review of these video quality assessment studies. Specifically, we first review the subjective video quality assessment methodologies and databases, which are necessary for validating the performance of video quality metrics. Second, the objective video quality assessment algorithms for general purposes are surveyed and concluded according to the methodologies utilized in the quality measures. Third, we overview the objective video quality assessment measures for specific applications and emerging topics. Finally, the performances of the state-of-the-art video quality assessment measures are compared and analyzed. This survey provides a systematic overview of both classical works and recent progresses in the realm of video quality assessment, which can help other researchers quickly access the field and conduct relevant research.
Sound event detection (SED) is essential for recognizing specific sounds and their temporal locations within acoustic signals. This becomes challenging particularly for on-device applications, where computational resources are limited. To address this issue, we introduce a novel framework referred to as dual knowledge distillation for developing efficient SED systems in this work. Our proposed dual knowledge distillation commences with temporal-averaging knowledge distillation (TAKD), utilizing a mean student model derived from the temporal averaging of the student model's parameters. This allows the student model to indirectly learn from a pre-trained teacher model, ensuring a stable knowledge distillation. Subsequently, we introduce embedding-enhanced feature distillation (EEFD), which involves incorporating an embedding distillation layer within the student model to bolster contextual learning. On DCASE 2023 Task 4A public evaluation dataset, our proposed SED system with dual knowledge distillation having merely one-third of the baseline model's parameters, demonstrates superior performance in terms of PSDS1 and PSDS2. This highlights the importance of proposed dual knowledge distillation for compact SED systems, which can be ideal for edge devices.
The ability to automatically generate music that appropriately matches an arbitrary input track is a challenging task. We present a novel controllable system for generating single stems to accompany musical mixes of arbitrary length. At the core of our method are audio autoencoders that efficiently compress audio waveform samples into invertible latent representations, and a conditional latent diffusion model that takes as input the latent encoding of a mix and generates the latent encoding of a corresponding stem. To provide control over the timbre of generated samples, we introduce a technique to ground the latent space to a user-provided reference style during diffusion sampling. For further improving audio quality, we adapt classifier-free guidance to avoid distortions at high guidance strengths when generating an unbounded latent space. We train our model on a dataset of pairs of mixes and matching bass stems. Quantitative experiments demonstrate that, given an input mix, the proposed system can generate basslines with user-specified timbres. Our controllable conditional audio generation framework represents a significant step forward in creating generative AI tools to assist musicians in music production.
In this paper we generalize and extend an idea of low-rank adaptation (LoRA) of large language models (LLMs) based on Transformer architecture. Widely used LoRA-like methods of fine-tuning LLMs are based on matrix factorization of gradient update. We introduce LoTR, a novel approach for parameter-efficient fine-tuning of LLMs which represents a gradient update to parameters in a form of tensor decomposition. Low-rank adapter for each layer is constructed as a product of three matrices, and tensor structure arises from sharing left and right multipliers of this product among layers. Simultaneous compression of a sequence of layers with low-rank tensor representation allows LoTR to archive even better parameter efficiency then LoRA especially for deep models. Moreover, the core tensor does not depend on original weight dimension and can be made arbitrary small, which allows for extremely cheap and fast downstream fine-tuning.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.