Despite the recent advancement in the study of removing motion blur in an image, it is still hard to deal with strong blurs. While there are limits in removing blurs from a single image, it has more potential to use multiple images, e.g., using an additional image as a reference to deblur a blurry image. A typical setting is deburring an image using a nearby sharp image(s) in a video sequence, as in the studies of video deblurring. This paper proposes a better method to use the information present in a reference image. The method does not need a strong assumption on the reference image. We can utilize an alternative shot of the identical scene, just like in video deblurring, or we can even employ a distinct image from another scene. Our method first matches local patches of the target and reference images and then fuses their features to estimate a sharp image. We employ a patch-based feature matching strategy to solve the difficult problem of matching the blurry image with the sharp reference. Our method can be integrated into pre-existing networks designed for single image deblurring. The experimental results show the effectiveness of the proposed method.
Video temporal character grouping locates appearing moments of major characters within a video according to their identities. To this end, recent works have evolved from unsupervised clustering to graph-based supervised clustering. However, graph methods are built upon the premise of fixed affinity graphs, bringing many inexact connections. Besides, they extract multi-modal features with kinds of models, which are unfriendly to deployment. In this paper, we present a unified and dynamic graph (UniDG) framework for temporal character grouping. This is accomplished firstly by a unified representation network that learns representations of multiple modalities within the same space and still preserves the modality's uniqueness simultaneously. Secondly, we present a dynamic graph clustering where the neighbors of different quantities are dynamically constructed for each node via a cyclic matching strategy, leading to a more reliable affinity graph. Thirdly, a progressive association method is introduced to exploit spatial and temporal contexts among different modalities, allowing multi-modal clustering results to be well fused. As current datasets only provide pre-extracted features, we evaluate our UniDG method on a collected dataset named MTCG, which contains each character's appearing clips of face and body and speaking voice tracks. We also evaluate our key components on existing clustering and retrieval datasets to verify the generalization ability. Experimental results manifest that our method can achieve promising results and outperform several state-of-the-art approaches.
This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.
Multi-Label Image Recognition (MLIR) is a challenging task that aims to predict multiple object labels in a single image while modeling the complex relationships between labels and image regions. Although convolutional neural networks and vision transformers have succeeded in processing images as regular grids of pixels or patches, these representations are sub-optimal for capturing irregular and discontinuous regions of interest. In this work, we present the first fully graph convolutional model, Group K-nearest neighbor based Graph convolutional Network (GKGNet), which models the connections between semantic label embeddings and image patches in a flexible and unified graph structure. To address the scale variance of different objects and to capture information from multiple perspectives, we propose the Group KGCN module for dynamic graph construction and message passing. Our experiments demonstrate that GKGNet achieves state-of-the-art performance with significantly lower computational costs on the challenging multi-label datasets, \ie MS-COCO and VOC2007 datasets. We will release the code and models to facilitate future research in this area.
With the proliferation of short video applications, the significance of short video recommendations has vastly increased. Unlike other recommendation scenarios, short video recommendation systems heavily rely on feedback from watch time. Existing approaches simply treat watch time as a direct label, failing to effectively harness its extensive semantics and introduce bias, thereby limiting the potential for modeling user interests based on watch time. To overcome this challenge, we propose a framework named Debiased Multiple-semantics-extracting Labeling(DML). DML constructs labels that encompass various semantics by utilizing quantiles derived from the distribution of watch time, prioritizing relative order rather than absolute label values. This approach facilitates easier model learning while aligning with the ranking objective of recommendations. Furthermore, we introduce a method inspired by causal adjustment to refine label definitions, thereby directly mitigating bias at the label level. We substantiate the effectiveness of our DML framework through both online and offline experiments. Extensive results demonstrate that our DML could effectively leverage watch time to discover users' real interests, enhancing their engagement in our application.
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images. Despite numerous task-specific methods, developing a comprehensive model remains challenging. In this paper, we present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects. Previous studies have used two-stage approaches that rely on pretrained NeRFs as real data to train diffusion models. In contrast, we propose a new single-stage training paradigm with an end-to-end objective that jointly optimizes a NeRF auto-decoder and a latent diffusion model, enabling simultaneous 3D reconstruction and prior learning, even from sparsely available views. At test time, we can directly sample the diffusion prior for unconditional generation, or combine it with arbitrary observations of unseen objects for NeRF reconstruction. SSDNeRF demonstrates robust results comparable to or better than leading task-specific methods in unconditional generation and single/sparse-view 3D reconstruction.
The quality of text-to-image generation is continuously improving, yet the boundaries of its applicability are still unclear. In particular, refinement of the text input with the objective of achieving better results - commonly called prompt engineering - so far seems to have not been geared towards work with pre-existing texts. We investigate whether text-to-image generation and prompt engineering could be used to generate basic illustrations of popular fairytales. Using Midjourney v4, we engage in action research with a dual aim: to attempt to generate 5 believable illustrations for each of 5 popular fairytales, and to define a prompt engineering process that starts from a pre-existing text and arrives at an illustration of it. We arrive at a tentative 4-stage process: i) initial prompt, ii) composition adjustment, iii) style refinement, and iv) variation selection. We also discuss three reasons why the generation model struggles with certain illustrations: difficulties with counts, bias from stereotypical configurations and inability to depict overly fantastic situations. Our findings are not limited to the specific generation model and are intended to be generalisable to future ones.
With the advent of digital scanners and deep learning, diagnostic operations may move from a microscope to a desktop. Hematoxylin and Eosin (H&E) staining is one of the most frequently used stains for disease analysis, diagnosis, and grading, but pathologists do need different immunohistochemical (IHC) stains to analyze specific structures or cells. Obtaining all of these stains (H&E and different IHCs) on a single specimen is a tedious and time-consuming task. Consequently, virtual staining has emerged as an essential research direction. Here, we propose a novel generative model, Structural Cycle-GAN (SC-GAN), for synthesizing IHC stains from H&E images, and vice versa. Our method expressly incorporates structural information in the form of edges (in addition to color data) and employs attention modules exclusively in the decoder of the proposed generator model. This integration enhances feature localization and preserves contextual information during the generation process. In addition, a structural loss is incorporated to ensure accurate structure alignment between the generated and input markers. To demonstrate the efficacy of the proposed model, experiments are conducted with two IHC markers emphasizing distinct structures of glands in the colon: the nucleus of epithelial cells (CDX2) and the cytoplasm (CK818). Quantitative metrics such as FID and SSIM are frequently used for the analysis of generative models, but they do not correlate explicitly with higher-quality virtual staining results. Therefore, we propose two new quantitative metrics that correlate directly with the virtual staining specificity of IHC markers.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.