亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.

相關內容

Processing 是一門(men)開源編程(cheng)語言和與(yu)之配套的(de)集成開發環境(IDE)的(de)名稱。Processing 在電子藝(yi)術(shu)和視覺設計社區被用來(lai)教授編程(cheng)基(ji)礎,并運用于(yu)大量的(de)新媒體和互動藝(yi)術(shu)作品中。

Multiple imputation (MI) models can be improved by including auxiliary covariates (AC), but their performance in high-dimensional data is not well understood. We aimed to develop and compare high-dimensional MI (HDMI) approaches using structured and natural language processing (NLP)-derived AC in studies with partially observed confounders. We conducted a plasmode simulation study using data from opioid vs. non-steroidal anti-inflammatory drug (NSAID) initiators (X) with observed serum creatinine labs (Z2) and time-to-acute kidney injury as outcome. We simulated 100 cohorts with a null treatment effect, including X, Z2, atrial fibrillation (U), and 13 other investigator-derived confounders (Z1) in the outcome generation. We then imposed missingness (MZ2) on 50% of Z2 measurements as a function of Z2 and U and created different HDMI candidate AC using structured and NLP-derived features. We mimicked scenarios where U was unobserved by omitting it from all AC candidate sets. Using LASSO, we data-adaptively selected HDMI covariates associated with Z2 and MZ2 for MI, and with U to include in propensity score models. The treatment effect was estimated following propensity score matching in MI datasets and we benchmarked HDMI approaches against a baseline imputation and complete case analysis with Z1 only. HDMI using claims data showed the lowest bias (0.072). Combining claims and sentence embeddings led to an improvement in the efficiency displaying the lowest root-mean-squared-error (0.173) and coverage (94%). NLP-derived AC alone did not perform better than baseline MI. HDMI approaches may decrease bias in studies with partially observed confounders where missingness depends on unobserved factors.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective extension of this problem from a computational standpoint. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to marginalise over the uncertainty in the problem. Whilst scalarisation refers to the procedure that is used to encode the relative importance of each objective. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. This work aims to give an exposition on the philosophical differences between these two operations and highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be easily integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our robustify and scalarise methodology. To illustrate the efficacy of these new ideas, we present two insightful numerical case studies which are based on real-world data sets.

The behavior of a GP regression depends on the choice of covariance function. Stationary covariance functions are preferred in machine learning applications. However, (non-periodic) stationary covariance functions are always mean reverting and can therefore exhibit pathological behavior when applied to data that does not relax to a fixed global mean value. In this paper we show that it is possible to use improper GP priors with infinite variance to define processes that are stationary but not mean reverting. To this aim, we use of non-positive kernels that can only be defined in this limit regime. The resulting posterior distributions can be computed analytically and it involves a simple correction of the usual formulas. The main contribution of the paper is the introduction of a large family of smooth non-reverting covariance functions that closely resemble the kernels commonly used in the GP literature (e.g. squared exponential and Mat\'ern class). By analyzing both synthetic and real data, we demonstrate that these non-positive kernels solve some known pathologies of mean reverting GP regression while retaining most of the favorable properties of ordinary smooth stationary kernels.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

Missing values have been thoroughly analyzed in the context of linear models, where the final aim is to build coefficient estimates. However, estimating coefficients does not directly solve the problem of prediction with missing entries: a manner to address empty components must be designed. Major approaches to deal with prediction with missing values are empirically driven and can be decomposed into two families: imputation (filling in empty fields) and pattern-by-pattern prediction, where a predictor is built on each missing pattern. Unfortunately, most simple imputation techniques used in practice (as constant imputation) are not consistent when combined with linear models. In this paper, we focus on the more flexible pattern-by-pattern approaches and study their predictive performances on Missing Completely At Random (MCAR) data. We first show that a pattern-by-pattern logistic regression model is intrinsically ill-defined, implying that even classical logistic regression is impossible to apply to missing data. We then analyze the perceptron model and show how the linear separability property extends to partially-observed inputs. Finally, we use the Linear Discriminant Analysis to prove that pattern-by-pattern LDA is consistent in a high-dimensional regime. We refine our analysis to more complex MNAR data.

We build a valid p-value based on a concentration inequality for bounded random variables introduced by Pelekis, Ramon and Wang. The motivation behind this work is the calibration of predictive algorithms in a distribution-free setting. The super-uniform p-value is tighter than Hoeffding and Bentkus alternatives in certain regions. Even though we are motivated by a calibration setting in a machine learning context, the ideas presented in this work are also relevant in classical statistical inference. Furthermore, we compare the power of a collection of valid p- values for bounded losses, which are presented in previous literature.

When modeling a vector of risk variables, extreme scenarios are often of special interest. The peaks-over-thresholds method hinges on the notion that, asymptotically, the excesses over a vector of high thresholds follow a multivariate generalized Pareto distribution. However, existing literature has primarily concentrated on the setting when all risk variables are always large simultaneously. In reality, this assumption is often not met, especially in high dimensions. In response to this limitation, we study scenarios where distinct groups of risk variables may exhibit joint extremes while others do not. These discernible groups are derived from the angular measure inherent in the corresponding max-stable distribution, whence the term extreme direction. We explore such extreme directions within the framework of multivariate generalized Pareto distributions, with a focus on their probability density functions in relation to an appropriate dominating measure. Furthermore, we provide a stochastic construction that allows any prespecified set of risk groups to constitute the distribution's extreme directions. This construction takes the form of a smoothed max-linear model and accommodates the full spectrum of conceivable max-stable dependence structures. Additionally, we introduce a generic simulation algorithm tailored for multivariate generalized Pareto distributions, offering specific implementations for extensions of the logistic and H\"usler-Reiss families capable of carrying arbitrary extreme directions.

The Bayesian evidence, crucial ingredient for model selection, is arguably the most important quantity in Bayesian data analysis: at the same time, however, it is also one of the most difficult to compute. In this paper we present a hierarchical method that leverages on a multivariate normalised approximant for the posterior probability density to infer the evidence for a model in a hierarchical fashion using a set of posterior samples drawn using an arbitrary sampling scheme.

Variable-exponent fractional models attract increasing attentions in various applications, while the rigorous analysis is far from well developed. This work provides general tools to address these models. Specifically, we first develop a convolution method to study the well-posedness, regularity, an inverse problem and numerical approximation for the sundiffusion of variable exponent. For models such as the variable-exponent two-sided space-fractional boundary value problem (including the variable-exponent fractional Laplacian equation as a special case) and the distributed variable-exponent model, for which the convolution method does not apply, we develop a perturbation method to prove their well-posedness. The relation between the convolution method and the perturbation method is discussed, and we further apply the latter to prove the well-posedness of the variable-exponent Abel integral equation and discuss the constraint on the data under different initial values of variable exponent.

北京阿比特科技有限公司