亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial intelligence (AI) shows great potential to reduce the huge cost of solving partial differential equations (PDEs). However, it is not fully realized in practice as neural networks are defined and trained on fixed domains and boundaries. Herein, we propose local neural operator (LNO) for solving transient PDEs on varied domains. It comes together with a handy strategy including boundary treatments, enabling one pre-trained LNO to predict solutions on different domains. For demonstration, LNO learns Navier-Stokes equations from randomly generated data samples, and then the pre-trained LNO is used as an explicit numerical time-marching scheme to solve the flow of fluid on unseen domains, e.g., the flow in a lid-driven cavity and the flow across the cascade of airfoils. It is about 1000$\times$ faster than the conventional finite element method to calculate the flow across the cascade of airfoils. The solving process with pre-trained LNO achieves great efficiency, with significant potential to accelerate numerical calculations in practice.

相關內容

Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.

The vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry. In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables, to evaluate the effectiveness of NISQ devices when applied to industry relevant optimization problems. We apply a quantum variational approach to a testbed of multiple VRPTW instances ranging from 11 to 3964 routes. These intances were formulated as quadratic unconstrained binary optimization (QUBO) problems based on realistic shipping scenarios. We compare our results with standard binary-to-qubit mappings after executing on simulators as well as various quantum hardware platforms, including IBMQ, AWS (Rigetti), and IonQ. These results are benchmarked against the classical solver, Gurobi. Our approach can find approximate solutions to the VRPTW comparable to those obtained from quantum algorithms using the full encoding, despite the reduction in qubits required. These results suggest that using the encoding scheme to fit larger problem sizes into fewer qubits is a promising step in using NISQ devices to find approximate solutions for industry-based optimization problems, although additional resources are still required to eke out the performance from larger problem sizes.

We develop the contour integral method for numerically solving the Feynman-Kac equation with two internal states [P. B. Xu and W. H. Deng, Math. Model. Nat. Phenom., 13 (2018), 10], describing the functional distribution of particle's internal states. The striking benefits are obtained, including spectral accuracy, low computational complexity, small memory requirement, etc. We perform the error estimates and stability analyses, which are confirmed by numerical experiments.

We propose a simple and efficient local algorithm for graph isomorphism which succeeds for a large class of sparse graphs. This algorithm produces a low-depth canonical labeling, which is a labeling of the vertices of the graph that identifies its isomorphism class using vertices' local neighborhoods. Prior work by Czajka and Pandurangan showed that the degree profile of a vertex (i.e., the sorted list of the degrees of its neighbors) gives a canonical labeling with high probability when $n p_n = \omega( \log^{4}(n) / \log \log n )$ (and $p_{n} \leq 1/2$); subsequently, Mossel and Ross showed that the same holds when $n p_n = \omega( \log^{2}(n) )$. We first show that their analysis essentially cannot be improved: we prove that when $n p_n = o( \log^{2}(n) / (\log \log n)^{3} )$, with high probability there exist distinct vertices with isomorphic $2$-neighborhoods. Our first main result is a positive counterpart to this, showing that $3$-neighborhoods give a canonical labeling when $n p_n \geq (1+\delta) \log n$ (and $p_n \leq 1/2$); this improves a recent result of Ding, Ma, Wu, and Xu, completing the picture above the connectivity threshold. Our second main result is a smoothed analysis of graph isomorphism, showing that for a large class of deterministic graphs, a small random perturbation ensures that $3$-neighborhoods give a canonical labeling with high probability. While the worst-case complexity of graph isomorphism is still unknown, this shows that graph isomorphism has polynomial smoothed complexity.

The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. On the basis of the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information.

Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term $t^{\mu}$, $-2<\mu<-1$ in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/ID$m$-BDF$k$ method proposed by the authors [Shi and Chen, SIAM J. Numer. Anal., to appear] for subdiffusion equation with a weakly singular source term. We prove that the $k$th-order convergence rate can be restored for the diffusion-wave case $\gamma \in (1,2)$ and sketch the proof for the subdiffusion case $\gamma \in (0,1)$, even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.

We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fr\'echet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fr\'echet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.

In this paper, we propose an energy stable network (EStable-Net) for solving gradient flow equations. The solution update scheme in our neural network EStable-Net is inspired by a proposed auxiliary variable based equivalent form of the gradient flow equation. EStable-Net enables decreasing of a discrete energy along the neural network, which is consistent with the property in the evolution process of the gradient flow equation. The architecture of the neural network EStable-Net consists of a few energy decay blocks, and the output of each block can be interpreted as an intermediate state of the evolution process of the gradient flow equation. This design provides a stable, efficient and interpretable network structure. Numerical experimental results demonstrate that our network is able to generate high accuracy and stable predictions.

The Sinkhorn algorithm is a numerical method for the solution of optimal transport problems. Here, I give a brief survey of this algorithm, with a strong emphasis on its geometric origin: it is natural to view it as a discretization, by standard methods, of a non-linear integral equation. In the appendix, I also provide a short summary of an early result of Beurling on product measures, directly related to the Sinkhorn algorithm.

The convergence analysis for least-squares finite element methods led to various adaptive mesh-refinement strategies: Collective marking algorithms driven by the built-in a posteriori error estimator or an alternative explicit residual-based error estimator as well as a separate marking strategy based on the alternative error estimator and an optimal data approximation algorithm. This paper reviews and discusses available convergence results. In addition, all three strategies are investigated empirically for a set of benchmarks examples of second-order elliptic partial differential equations in two spatial dimensions. Particular interest is on the choice of the marking and refinement parameters and the approximation of the given data. The numerical experiments are reproducible using the author's software package octAFEM available on the platform Code Ocean.

北京阿比特科技有限公司