The influence maximization paradigm has been used by researchers in various fields in order to study how information spreads in social networks. While previously the attention was mostly on efficiency, more recently fairness issues have been taken into account in this scope. In this paper, we propose to use randomization as a mean for achieving fairness. Similar to previous works like Fish et al. (WWW '19) and Tsang et al. (IJCAI '19), we study the maximin criterion for (group) fairness. In contrast to their work however, we model the problem in such a way that, when choosing the seed sets, probabilistic strategies are possible rather than only deterministic ones. We introduce two different variants of this probabilistic problem, one that entails probabilistic strategies over nodes (node-based problem) and a second one that entails probabilistic strategies over sets of nodes (set-based problem). While the original deterministic problem involving the maximin criterion has been shown to be inapproximable, interestingly, we show that both probabilistic variants permit approximation algorithms that achieve a constant multiplicative factor of 1-1/e plus an additive arbitrarily small error that is due to the simulation of the information spread. For an experimental study, we provide implementations of multiplicative-weight routines for both problems and compare the achieved fairness values to existing methods. Maybe non-surprisingly, we show that the ex-ante values of the computed probabilistic strategies are significantly larger than the (ex-post) fairness values of previous methods. This indicates that studying fairness via randomization is a worthwhile path to follow. Interestingly and maybe more surprisingly, we observe that even the ex-post fairness values computed by our routines, dominate over the fairness achieved by previous methods on most of the instances tested.
ML models are typically trained using large datasets of high quality. However, training datasets often contain inconsistent or incomplete data. To tackle this issue, one solution is to develop algorithms that can check whether a prediction of a model is certifiably robust. Given a learning algorithm that produces a classifier and given an example at test time, a classification outcome is certifiably robust if it is predicted by every model trained across all possible worlds (repairs) of the uncertain (inconsistent) dataset. This notion of robustness falls naturally under the framework of certain answers. In this paper, we study the complexity of certifying robustness for a simple but widely deployed classification algorithm, $k$-Nearest Neighbors ($k$-NN). Our main focus is on inconsistent datasets when the integrity constraints are functional dependencies (FDs). For this setting, we establish a dichotomy in the complexity of certifying robustness w.r.t. the set of FDs: the problem either admits a polynomial time algorithm, or it is coNP-hard. Additionally, we exhibit a similar dichotomy for the counting version of the problem, where the goal is to count the number of possible worlds that predict a certain label. As a byproduct of our study, we also establish the complexity of a problem related to finding an optimal subset repair that may be of independent interest.
The discrepant posterior phenomenon (DPP) is a counter-intuitive phenomenon that can frequently occur in a Bayesian analysis of multivariate parameters. It refers to the phenomenon that a parameter estimate based on a posterior is more extreme than both of those inferred based on either the prior or the likelihood alone. Inferential claims that exhibit DPP defy the common intuition that the posterior is a prior-data compromise, and the phenomenon can be surprisingly ubiquitous in well-behaved Bayesian models. In this paper we revisit this phenomenon and, using point estimation as an example, derive conditions under which the DPP occurs in Bayesian models with exponential quadratic likelihoods and conjugate multivariate Gaussian priors. The family of exponential quadratic likelihood models includes Gaussian models and those models with local asymptotic normality property. We provide an intuitive geometric interpretation of the phenomenon and show that there exists a nontrivial space of marginal directions such that the DPP occurs. We further relate the phenomenon to the Simpson's paradox and discover their deep-rooted connection that is associated with marginalization. We also draw connections with Bayesian computational algorithms when difficult geometry exists. Our discovery demonstrates that DPP is more prevalent than previously understood and anticipated. Theoretical results are complemented by numerical illustrations. Scenarios covered in this study have implications for parameterization, sensitivity analysis, and prior choice for Bayesian modeling.
Graph Neural Networks (GNNs) have proven to excel in predictive modeling tasks where the underlying data is a graph. However, as GNNs are extensively used in human-centered applications, the issue of fairness has arisen. While edge deletion is a common method used to promote fairness in GNNs, it fails to consider when data is inherently missing fair connections. In this work we consider the unexplored method of edge addition, accompanied by deletion, to promote fairness. We propose two model-agnostic algorithms to perform edge editing: a brute force approach and a continuous approximation approach, FairEdit. FairEdit performs efficient edge editing by leveraging gradient information of a fairness loss to find edges that improve fairness. We find that FairEdit outperforms standard training for many data sets and GNN methods, while performing comparably to many state-of-the-art methods, demonstrating FairEdit's ability to improve fairness across many domains and models.
The additive hazards model specifies the effect of covariates on the hazard in an additive way, in contrast to the popular Cox model, in which it is multiplicative. As non-parametric model, it offers a very flexible way of modeling time-varying covariate effects. It is most commonly estimated by ordinary least squares. In this paper we consider the case where covariates are bounded, and derive the maximum likelihood estimator under the constraint that the hazard is non-negative for all covariate values in their domain. We describe an efficient algorithm to find the maximum likelihood estimator. The method is contrasted with the ordinary least squares approach in a simulation study, and the method is illustrated on a realistic data set.
Algorithmic fairness has aroused considerable interests in data mining and machine learning communities recently. So far the existing research has been mostly focusing on the development of quantitative metrics to measure algorithm disparities across different protected groups, and approaches for adjusting the algorithm output to reduce such disparities. In this paper, we propose to study the problem of identification of the source of model disparities. Unlike existing interpretation methods which typically learn feature importance, we consider the causal relationships among feature variables and propose a novel framework to decompose the disparity into the sum of contributions from fairness-aware causal paths, which are paths linking the sensitive attribute and the final predictions, on the graph. We also consider the scenario when the directions on certain edges within those paths cannot be determined. Our framework is also model agnostic and applicable to a variety of quantitative disparity measures. Empirical evaluations on both synthetic and real-world data sets are provided to show that our method can provide precise and comprehensive explanations to the model disparities.
Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.
We investigate the problem of fair recommendation in the context of two-sided online platforms, comprising customers on one side and producers on the other. Traditionally, recommendation services in these platforms have focused on maximizing customer satisfaction by tailoring the results according to the personalized preferences of individual customers. However, our investigation reveals that such customer-centric design may lead to unfair distribution of exposure among the producers, which may adversely impact their well-being. On the other hand, a producer-centric design might become unfair to the customers. Thus, we consider fairness issues that span both customers and producers. Our approach involves a novel mapping of the fair recommendation problem to a constrained version of the problem of fairly allocating indivisible goods. Our proposed FairRec algorithm guarantees at least Maximin Share (MMS) of exposure for most of the producers and Envy-Free up to One item (EF1) fairness for every customer. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in ensuring two-sided fairness while incurring a marginal loss in the overall recommendation quality.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.