In applications such as remote estimation and monitoring, update packets are transmitted by power-constrained devices using short-packet codes over wireless networks. Therefore, networks need to be end-to-end optimized using information freshness metrics such as age of information under transmit power and reliability constraints to ensure support for such applications. For short-packet coding, modelling and understanding the effect of block codeword length on transmit power and other performance metrics is important. To understand the above optimization for short-packet coding, we consider the optimal tradeoff problem between age of information and transmit power under reliability constraints for short packet point-to-point communication model with an exogenous packet generation process. In contrast to prior work, we consider scheduling policies that can possibly adapt the block-length or transmission time of short packet codes in order to achieve the optimal tradeoff. We characterize the tradeoff using a semi-Markov decision process formulation. We also obtain analytical upper bounds as well as numerical, analytical, and asymptotic lower bounds on the optimal tradeoff. We show that in certain regimes, such as high reliability and high packet generation rate, non-adaptive scheduling policies (fixed transmission time policies) are close-to-optimal. Furthermore, in a high-power or in a low-power regime, non-adaptive as well as state-independent randomized scheduling policies are order-optimal. These results are corroborated by numerical and simulation experiments. The tradeoff is then characterized for a wireless point-to-point channel with block fading as well as for other packet generation models (including an age-dependent packet generation model).
Cognitive agent abstractions can help to engineer intelligent systems across mobile devices. On smartphones, the data obtained from onboard sensors can give valuable insights into the user's current situation. Unfortunately, today's cognitive agent frameworks cannot cope well with the challenging characteristics of sensor data. Sensor data is located on a low abstraction level and the individual data elements are not meaningful when observed in isolation. In contrast, cognitive agents operate on high-level percepts and lack the means to effectively detect complex spatio-temporal patterns in sequences of multiple percepts. In this paper, we present a stream-based perception approach that enables the agents to perceive meaningful situations in low-level sensor data streams. We present a crowdshipping case study where autonomous, self-interested agents collaborate to deliver parcels to their destinations. We show how situations derived from smartphone sensor data can trigger and guide auctions, which the agents use to reach agreements. Experiments with real smartphone data demonstrate the benefits of stream-based agent perception.
Object recognition and object pose estimation in robotic grasping continue to be significant challenges, since building a labelled dataset can be time consuming and financially costly in terms of data collection and annotation. In this work, we propose a synthetic data generation method that minimizes human intervention and makes downstream image segmentation algorithms more robust by combining a generated synthetic dataset with a smaller real-world dataset (hybrid dataset). Annotation experiments show that the proposed synthetic scene generation can diminish labelling time dramatically. RGB image segmentation is trained with hybrid dataset and combined with depth information to produce pixel-to-point correspondence of individual segmented objects. The object to grasp is then determined by the confidence score of the segmentation algorithm. Pick-and-place experiments demonstrate that segmentation trained on our hybrid dataset (98.9%, 70%) outperforms the real dataset and a publicly available dataset by (6.7%, 18.8%) and (2.8%, 10%) in terms of labelling and grasping success rate, respectively. Supplementary material is available at //sites.google.com/view/synthetic-dataset-generation.
Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.
We present a multi-agent Deep Reinforcement Learning (DRL) framework for managing large transportation infrastructure systems over their life-cycle. Life-cycle management of such engineering systems is a computationally intensive task, requiring appropriate sequential inspection and maintenance decisions able to reduce long-term risks and costs, while dealing with different uncertainties and constraints that lie in high-dimensional spaces. To date, static age- or condition-based maintenance methods and risk-based or periodic inspection plans have mostly addressed this class of optimization problems. However, optimality, scalability, and uncertainty limitations are often manifested under such approaches. The optimization problem in this work is cast in the framework of constrained Partially Observable Markov Decision Processes (POMDPs), which provides a comprehensive mathematical basis for stochastic sequential decision settings with observation uncertainties, risk considerations, and limited resources. To address significantly large state and action spaces, a Deep Decentralized Multi-agent Actor-Critic (DDMAC) DRL method with Centralized Training and Decentralized Execution (CTDE), termed as DDMAC-CTDE is developed. The performance strengths of the DDMAC-CTDE method are demonstrated in a generally representative and realistic example application of an existing transportation network in Virginia, USA. The network includes several bridge and pavement components with nonstationary degradation, agency-imposed constraints, and traffic delay and risk considerations. Compared to traditional management policies for transportation networks, the proposed DDMAC-CTDE method vastly outperforms its counterparts. Overall, the proposed algorithmic framework provides near optimal solutions for transportation infrastructure management under real-world constraints and complexities.
Polynomial approximations of functions are widely used in scientific computing. In certain applications, it is often desired to require the polynomial approximation to be non-negative (resp. non-positive), or bounded within a given range, due to constraints posed by the underlying physical problems. Efficient numerical methods are thus needed to enforce such conditions. In this paper, we discuss effective numerical algorithms for polynomial approximation under non-negativity constraints. We first formulate the constrained optimization problem, its primal and dual forms, and then discuss efficient first-order convex optimization methods, with a particular focus on high dimensional problems. Numerical examples are provided, for up to $200$ dimensions, to demonstrate the effectiveness and scalability of the methods.
Many testing problems are readily amenable to randomised tests such as those employing data splitting. However despite their usefulness in principle, randomised tests have obvious drawbacks. Firstly, two analyses of the same dataset may lead to different results. Secondly, the test typically loses power because it does not fully utilise the entire sample. As a remedy to these drawbacks, we study how to combine the test statistics or p-values resulting from multiple random realisations such as through random data splits. We develop rank-transformed subsampling as a general method for delivering large sample inference about the combined statistic or p-value under mild assumptions. We apply our methodology to a wide range of problems, including testing unimodality in high-dimensional data, testing goodness-of-fit of parametric quantile regression models, testing no direct effect in a sequentially randomised trial and calibrating cross-fit double machine learning confidence intervals. In contrast to existing p-value aggregation schemes that can be highly conservative, our method enjoys type-I error control that asymptotically approaches the nominal level. Moreover, compared to using the ordinary subsampling, we show that our rank transform can remove the first-order bias in approximating the null under alternatives and greatly improve power.
Optimization under uncertainty is important in many applications, particularly to inform policy and decision making in areas such as public health. A key source of uncertainty arises from the incorporation of environmental variables as inputs into computational models or simulators. Such variables represent uncontrollable features of the optimization problem and reliable decision making must account for the uncertainty they propagate to the simulator outputs. Often, multiple, competing objectives are defined from these outputs such that the final optimal decision is a compromise between different goals. Here, we present emulation-based optimization methodology for such problems that extends expected quantile improvement (EQI) to address multi-objective optimization. Focusing on the practically important case of two objectives, we use a sequential design strategy to identify the Pareto front of optimal solutions. Uncertainty from the environmental variables is integrated out using Monte Carlo samples from the simulator. Interrogation of the expected output from the simulator is facilitated by use of (Gaussian process) emulators. The methodology is demonstrated on an optimization problem from public health involving the dispersion of anthrax spores across a spatial terrain. Environmental variables include meteorological features that impact the dispersion, and the methodology identifies the Pareto front even when there is considerable input uncertainty.
Recent advances in signal processing and information theory are boosting the development of new approaches for the data-driven modelling of complex network systems. In the fields of Network Physiology and Network Neuroscience where the signals of interest are often rich of oscillatory content, the spectral representation of network systems is essential to ascribe the analyzed interactions to specific oscillations with physiological meaning. In this context, the present work formalizes a coherent framework which integrates several information dynamics approaches to quantify node-specific, pairwise and higher-order interactions in network systems. The framework establishes a hierarchical organization of interactions of different order using measures of entropy rate, mutual information rate and O-information rate, to quantify respectively the dynamics of individual nodes, the links between pairs of nodes, and the redundant/synergistic hyperlinks between groups of nodes. All measures are formulated in the time domain, and then expanded to the spectral domain to obtain frequency-specific information. The practical computation of all measures is favored presenting a toolbox that implements their parametric and non-parametric estimation, and includes approaches to assess their statistical significance. The framework is illustrated first using theoretical examples where the properties of the measures are displayed in benchmark simulated network systems, and then applied to representative examples of multivariate time series in the context of Network Neuroscience and Network Physiology.
Neural network with quadratic decision functions have been introduced as alternatives to standard neural networks with affine linear one. They are advantageous when the objects to be identified are of compact basic geometries like circles, ellipsis etc. In this paper we investigate the use of such ansatz functions for classification. In particular we test and compare the algorithm on the MNIST dataset for classification of handwritten digits and for classification of subspecies. We also show, that the implementation can be based on the neural network structure in the software Tensorflow and Keras, respectively.
Neural networks have been employed for a wide range of processing applications like image processing, motor control, object detection and many others. Living neural networks offer advantages of lower power consumption, faster processing, and biological realism. Optogenetics offers high spatial and temporal control over biological neurons and presents potential in training live neural networks. This work proposes a simulated living neural network trained indirectly by backpropagating STDP based algorithms using precision activation by optogenetics achieving accuracy comparable to traditional neural network training algorithms.