We consider an inverse problem for a finite graph $(X,E)$ where we are given a subset of vertices $B\subset X$ and the distances $d_{(X,E)}(b_1,b_2)$ of all vertices $b_1,b_2\in B$. The distance of points $x_1,x_2\in X$ is defined as the minimal number of edges needed to connect two vertices, so all edges have length 1. The inverse problem is a discrete version of the boundary rigidity problem in Riemannian geometry or the inverse travel time problem in geophysics. We will show that this problem has unique solution under certain conditions and develop quantum computing methods to solve it. We prove the following uniqueness result: when $(X,E)$ is a tree and $B$ is the set of leaves of the tree, the graph $(X,E)$ can be uniquely determined in the class of all graphs having a fixed number of vertices. We present a quantum computing algorithm which produces a graph $(X,E)$, or one of those, which has a given number of vertices and the required distances between vertices in $B$. To this end we develop an algorithm that takes in a qubit representation of a graph and combine it with Grover's search algorithm. The algorithm can be implemented using only $O(|X|^2)$ qubits, the same order as the number of elements in the adjacency matrix of $(X,E)$. It also has a quadratic improvement in computational cost compared to standard classical algorithms. Finally, we consider applications in theory of computation, and show that a slight modification of the above inverse problem is NP-complete: all NP-problems can be reduced to a discrete inverse problem we consider.
We consider the cubic nonlinear Schr\"odinger equation with a spatially rough potential, a key equation in the mathematical setup for nonlinear Anderson localization. Our study comprises two main parts: new optimal results on the well-posedness analysis on the PDE level, and subsequently a new efficient numerical method, its convergence analysis and simulations that illustrate our analytical results. In the analysis part, our results focus on understanding how the regularity of the solution is influenced by the regularity of the potential, where we provide quantitative and explicit characterizations. Ill-posedness results are also established to demonstrate the sharpness of the obtained regularity characterizations and to indicate the minimum regularity required from the potential for the NLS to be solvable. Building upon the obtained regularity results, we design an appropriate numerical discretization for the model and establish its convergence with an optimal error bound. The numerical experiments in the end not only verify the theoretical regularity results, but also confirm the established convergence rate of the proposed scheme. Additionally, a comparison with other existing schemes is conducted to demonstrate the better accuracy of our new scheme in the case of a rough potential.
Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the $I^2$ statistic is most commonly used. In this paper, we first illustrate with a simple example that the $I^2$ statistic is heavily dependent on the study sample sizes, mainly because it is used to quantify the heterogeneity between the observed effect sizes. To reduce the influence of sample sizes, we introduce an alternative measure that aims to directly measure the heterogeneity between the study populations involved in the meta-analysis. We further propose a new estimator, namely the $I_A^2$ statistic, to estimate the newly defined measure of heterogeneity. For practical implementation, the exact formulas of the $I_A^2$ statistic are also derived under two common scenarios with the effect size as the mean difference (MD) or the standardized mean difference (SMD). Simulations and real data analysis demonstrate that the $I_A^2$ statistic provides an asymptotically unbiased estimator for the absolute heterogeneity between the study populations, and it is also independent of the study sample sizes as expected. To conclude, our newly defined $I_A^2$ statistic can be used as a supplemental measure of heterogeneity to monitor the situations where the study effect sizes are indeed similar with little biological difference. In such scenario, the fixed-effect model can be appropriate; nevertheless, when the sample sizes are sufficiently large, the $I^2$ statistic may still increase to 1 and subsequently suggest the random-effects model for meta-analysis.
We consider a class of symmetry hypothesis testing problems including testing isotropy on $\mathbb{R}^d$ and testing rotational symmetry on the hypersphere $\mathcal{S}^{d-1}$. For this class, we study the null and non-null behaviors of Sobolev tests, with emphasis on their consistency rates. Our main results show that: (i) Sobolev tests exhibit a detection threshold (see Bhattacharya, 2019, 2020) that does not only depend on the coefficients defining these tests; and (ii) tests with non-zero coefficients at odd (respectively, even) ranks only are blind to alternatives with angular functions whose $k$th-order derivatives at zero vanish for any $k$ odd (even). Our non-standard asymptotic results are illustrated with Monte Carlo exercises. A case study in astronomy applies the testing toolbox to evaluate the symmetry of orbits of long- and short-period comets.
This study introduces the divergence-conforming discontinuous Galerkin finite element method (DGFEM) for numerically approximating optimal control problems with distributed constraints, specifically those governed by stationary generalized Oseen equations. We provide optimal a priori error estimates in energy norms for such problems using the divergence-conforming DGFEM approach. Moreover, we thoroughly analyze $L^2$ error estimates for scenarios dominated by diffusion and convection. Additionally, we establish the new reliable and efficient a posteriori error estimators for the optimal control of the Oseen equation with variable viscosity. Theoretical findings are validated through numerical experiments conducted in both two and three dimensions.
We consider a family of conforming space-time finite element discretizations for the wave equation based on splines of maximal regularity in time. Traditional techniques may require a CFL condition to guarantee stability. Recent works by O. Steinbach and M. Zank (2018), and S. Fraschini, G. Loli, A. Moiola, and G. Sangalli (2023), have introduced unconditionally stable schemes by adding non-consistent penalty terms to the underlying bilinear form. Stability and error analysis have been carried out for lowest order discrete spaces. While higher order methods have shown promising properties through numerical testing, their rigorous analysis was still missing. In this paper, we address this stability analysis by studying the properties of the condition number of a family of matrices associated with the time discretization. For each spline order, we derive explicit estimates of both the CFL condition required in the unstabilized case and the penalty term that minimises the consistency error in the stabilized case. Numerical tests confirm the sharpness of our results.
Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.
For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ L^p $-regularity estimate is established, and a sharp error estimate in the norm $ \|\cdot\|_{L^p((0,T)\times\Omega;L^q(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.
The aim of this paper is to study the complexity of the model checking problem MC for inquisitive propositional logic InqB and for inquisitive modal logic InqM, that is, the problem of deciding whether a given finite structure for the logic satisfies a given formula. In recent years, this problem has been thoroughly investigated for several variations of dependence and teams logics, systems closely related to inquisitive logic. Building upon some ideas presented by Yang, we prove that the model checking problems for InqB and InqM are both AP-complete.
We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\varphi$, using evaluations of the function at random points $x_1,\dots,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\varphi(x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log(m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty$ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
We study the equational theory of the Weihrauch lattice with multiplication, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the product $\times$, and the finite parallelization $(-)^*$ which are true however we substitute Weihrauch degrees for the variables. We provide a combinatorial description of these in terms of a reducibility between finite graphs, and moreover, show that deciding which equations are true in this sense is complete for the third level of the polynomial hierarchy.