亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The World Wide Web is not only one of the most important platforms of communication and information at present, but also an area of growing interest for scientific research. This motivates a lot of work and projects that require large amounts of data. However, there is no dataset that integrates the parameters and visual appearance of Web pages, because its collection is a costly task in terms of time and effort. With the support of various computer tools and programming scripts, we have created a large dataset of 49,438 Web pages. It consists of visual, textual and numerical data types, includes all countries worldwide, and considers a broad range of topics such as art, entertainment, economy, business, education, government, news, media, science, and environment, covering different cultural characteristics and varied design preferences. In this paper, we describe the process of collecting, debugging and publishing the final product, which is freely available. To demonstrate the usefulness of our dataset, we expose a binary classification model for detecting error Web pages, and a multi-class Web subject-based categorization, both problems using convolutional neural networks.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Charts go hand in hand with text to communicate complex data and are widely adopted in news articles, online blogs, and academic papers. They provide graphical summaries of the data, while text explains the message and context. However, synthesizing information across text and charts is difficult; it requires readers to frequently shift their attention. We investigated ways to support the tight coupling of text and charts in data documents. To understand their interplay, we analyzed the design space of chart-text references through news articles and scientific papers. Informed by the analysis, we developed a mixed-initiative interface enabling users to construct interactive references between text and charts. It leverages natural language processing to automatically suggest references as well as allows users to manually construct other references effortlessly. A user study complemented with algorithmic evaluation of the system suggests that the interface provides an effective way to compose interactive data documents.

"Art is the lie that enables us to realize the truth." - Pablo Picasso. For centuries, humans have dedicated themselves to producing arts to convey their imagination. The advancement in technology and deep learning in particular, has caught the attention of many researchers trying to investigate whether art generation is possible by computers and algorithms. Using generative adversarial networks (GANs), applications such as synthesizing photorealistic human faces and creating captions automatically from images were realized. This survey takes a comprehensive look at the recent works using GANs for generating visual arts, music, and literary text. A performance comparison and description of the various GAN architecture are also presented. Finally, some of the key challenges in art generation using GANs are highlighted along with recommendations for future work.

Mobile User Interface Summarization generates succinct language descriptions of mobile screens for conveying important contents and functionalities of the screen, which can be useful for many language-based application scenarios. We present Screen2Words, a novel screen summarization approach that automatically encapsulates essential information of a UI screen into a coherent language phrase. Summarizing mobile screens requires a holistic understanding of the multi-modal data of mobile UIs, including text, image, structures as well as UI semantics, motivating our multi-modal learning approach. We collected and analyzed a large-scale screen summarization dataset annotated by human workers. Our dataset contains more than 112k language summarization across $\sim$22k unique UI screens. We then experimented with a set of deep models with different configurations. Our evaluation of these models with both automatic accuracy metrics and human rating shows that our approach can generate high-quality summaries for mobile screens. We demonstrate potential use cases of Screen2Words and open-source our dataset and model to lay the foundations for further bridging language and user interfaces.

One of the most widely known and important applications of probability and statistics is scientific polling to forecast election results. In 1936, Gallup predicted correctly the victory of Roosevelt over Landon in the US presidential election, using scientific sampling of 3,000 persons, whereas the Literary Digest failed using 2.4 million answers to 10 million mailed questionnaires to automobile and telephone owners. Since then, polls have grown to be a flourishing and very influential and important industry, spreading around the world. Polls have mostly been accurate in the US presidential elections, with a few exceptions. Their two most notable failures were their wrong predictions of the US 1948 and 2016 presidential elections. Most polls failed too in the 2016 UK Referendum, in the 2014 and 2019 India Lok Sabha elections, and in the US 2020 presidential election, even though in the latter three they did predict the winner. We discuss these polls in the present paper. The failure in 1948 was due to non-random sampling. In 2016 and 2020 it was mainly due to the problem of non-response and possible biases of the pollsters. In 2014 and 2019 it was due to non-response and political biases of the polling agencies and news outlets that produced the polls.

Extending the popular Answer Set Programming (ASP) paradigm by introspective reasoning capacities has received increasing interest within the last years. Particular attention is given to the formalism of epistemic logic programs (ELPs) where standard rules are equipped with modal operators which allow to express conditions on literals for being known or possible, i.e., contained in all or some answer sets, respectively. ELPs thus deliver multiple collections of answer sets, known as world views. Employing ELPs for reasoning problems so far has mainly been restricted to standard decision problems (complexity analysis) and enumeration (development of systems) of world views. In this paper, we take a next step and contribute to epistemic logic programming in two ways: First, we establish quantitative reasoning for ELPs, where the acceptance of a certain set of literals depends on the number (proportion) of world views that are compatible with the set. Second, we present a novel system that is capable of efficiently solving the underlying counting problems required to answer such quantitative reasoning problems. Our system exploits the graph-based measure treewidth and works by iteratively finding and refining (graph) abstractions of an ELP program. On top of these abstractions, we apply dynamic programming that is combined with utilizing existing search-based solvers like (e)clingo for hard combinatorial subproblems that appear during solving. It turns out that our approach is competitive with existing systems that were introduced recently. This work is under consideration for acceptance in TPLP.

Problem-driven visualization work is rooted in deeply understanding the data, actors, processes, and workflows of a target domain. However, an individual's personality traits and cognitive abilities may also influence visualization use. Diverse user needs and abilities raise natural questions for specificity in visualization design: Could individuals from different domains exhibit performance differences when using visualizations? Are any systematic variations related to their cognitive abilities? This study bridges domain-specific perspectives on visualization design with those provided by cognition and perception. We measure variations in visualization task performance across chemistry, computer science, and education, and relate these differences to variations in spatial ability. We conducted an online study with over 60 domain experts consisting of tasks related to pie charts, isocontour plots, and 3D scatterplots, and grounded by a well-documented spatial ability test. Task performance (correctness) varied with profession across more complex visualizations, but not pie charts, a comparatively common visualization. We found that correctness correlates with spatial ability, and the professions differ in terms of spatial ability. These results indicate that domains differ not only in the specifics of their data and tasks, but also in terms of how effectively their constituent members engage with visualizations and their cognitive traits. Analyzing participants' confidence and strategy comments suggests that focusing on performance neglects important nuances, such as differing approaches to engage with even common visualizations and potential skill transference. Our findings offer a fresh perspective on discipline-specific visualization with recommendations to help guide visualization design that celebrates the uniqueness of the disciplines and individuals we seek to serve.

Shadow detection in a single image has received significant research interest in recent years. However, much fewer works have been explored in shadow detection over dynamic scenes. The bottleneck is the lack of a well-established dataset with high-quality annotations for video shadow detection. In this work, we collect a new video shadow detection dataset, which contains 120 videos with 11, 685 frames, covering 60 object categories, varying lengths, and different motion/lighting conditions. All the frames are annotated with a high-quality pixel-level shadow mask. To the best of our knowledge, this is the first learning-oriented dataset for video shadow detection. Furthermore, we develop a new baseline model, named triple-cooperative video shadow detection network (TVSD-Net). It utilizes triple parallel networks in a cooperative manner to learn discriminative representations at intra-video and inter-video levels. Within the network, a dual gated co-attention module is proposed to constrain features from neighboring frames in the same video, while an auxiliary similarity loss is introduced to mine semantic information between different videos. Finally, we conduct a comprehensive study on ViSha, evaluating 12 state-of-the-art models (including single image shadow detectors, video object segmentation, and saliency detection methods). Experiments demonstrate that our model outperforms SOTA competitors.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Most of the existing work on automatic facial expression analysis focuses on discrete emotion recognition, or facial action unit detection. However, facial expressions do not always fall neatly into pre-defined semantic categories. Also, the similarity between expressions measured in the action unit space need not correspond to how humans perceive expression similarity. Different from previous work, our goal is to describe facial expressions in a continuous fashion using a compact embedding space that mimics human visual preferences. To achieve this goal, we collect a large-scale faces-in-the-wild dataset with human annotations in the form: Expressions A and B are visually more similar when compared to expression C, and use this dataset to train a neural network that produces a compact (16-dimensional) expression embedding. We experimentally demonstrate that the learned embedding can be successfully used for various applications such as expression retrieval, photo album summarization, and emotion recognition. We also show that the embedding learned using the proposed dataset performs better than several other embeddings learned using existing emotion or action unit datasets.

While advances in computing resources have made processing enormous amounts of data possible, human ability to identify patterns in such data has not scaled accordingly. Thus, efficient computational methods for condensing and simplifying data are becoming vital for extracting actionable insights. In particular, while data summarization techniques have been studied extensively, only recently has summarizing interconnected data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art methods for summarizing graph data. We first broach the motivation behind and the challenges of graph summarization. We then categorize summarization approaches by the type of graphs taken as input and further organize each category by core methodology. Finally, we discuss applications of summarization on real-world graphs and conclude by describing some open problems in the field.

北京阿比特科技有限公司