亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Whole slide image (WSI) refers to a type of high-resolution scanned tissue image, which is extensively employed in computer-assisted diagnosis (CAD). The extremely high resolution and limited availability of region-level annotations make employing deep learning methods for WSI-based digital diagnosis challenging. Recently integrating multiple instance learning (MIL) and Transformer for WSI analysis shows very promising results. However, designing effective Transformers for this weakly-supervised high-resolution image analysis is an underexplored yet important problem. In this paper, we propose a Multi-level MIL (MMIL) scheme by introducing a hierarchical structure to MIL, which enables efficient handling of MIL tasks involving a large number of instances. Based on MMIL, we instantiated MMIL-Transformer, an efficient Transformer model with windowed exact self-attention for large-scale MIL tasks. To validate its effectiveness, we conducted a set of experiments on WSI classification tasks, where MMIL-Transformer demonstrate superior performance compared to existing state-of-the-art methods, i.e., 96.80% test AUC and 97.67% test accuracy on the CAMELYON16 dataset, 99.04% test AUC and 94.37% test accuracy on the TCGA-NSCLC dataset, respectively. All code and pre-trained models are available at: //github.com/hustvl/MMIL-Transformer

相關內容

This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context. Previous studies have suggested that key phrase selection is essential for question generation (QG), yet it is still challenging to connect such disjointed phrases into meaningful questions, particularly for long context. To mitigate this issue, we propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-model, which simultaneously selects key phrases and generates full answers, and Q-model which takes the generated full answer as an additional input to generate questions. Here, full answer generation is introduced to connect the short answer with the selected key phrases, thus forming an answer-aware summary to facilitate QG. Both FA-model and Q-model are formalized as simple-yet-effective Phrase-Enhanced Transformers, our joint model for phrase selection and text generation. Experimental results show that our method outperforms strong baselines on two popular QG datasets. Our code is available at //github.com/zeaver/MultiFactor.

We devise a version of Linear Temporal Logic (LTL) on a denotational domain of streams. We investigate this logic in terms of domain theory, (point-free) topology and geometric logic. This yields the first steps toward an extension of the "Domain Theory in Logical Form" paradigm to temporal liveness properties. We show that the negation-free formulae of LTL induce sober subspaces of streams, but that this is in general not the case in presence of negation. We propose a direct, inductive, translation of negation-free LTL to geometric logic. This translation reflects the approximations used to compute the usual fixpoint representations of LTL modalities. As a motivating example, we handle a natural input-output specification for the usual filter function on streams.

Diffusion probabilistic models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling. Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs. However, they highly rely on specific parameterization during inference (such as noise/data prediction), which might not be the optimal choice. In this work, we propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error of the ODE solution. Based on such formulation, we propose \textit{DPM-Solver-v3}, a new fast ODE solver for DPMs by introducing several coefficients efficiently computed on the pretrained model, which we call \textit{empirical model statistics}. We further incorporate multistep methods and a predictor-corrector framework, and propose some techniques for improving sample quality at small numbers of function evaluations (NFE) or large guidance scales. Experiments show that DPM-Solver-v3 achieves consistently better or comparable performance in both unconditional and conditional sampling with both pixel-space and latent-space DPMs, especially in 5$\sim$10 NFEs. We achieve FIDs of 12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5 NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15\%$\sim$30\% compared to previous state-of-the-art training-free methods. Code is available at \url{//github.com/thu-ml/DPM-Solver-v3}.

Whole-slide image analysis via the means of computational pathology often relies on processing tessellated gigapixel images with only slide-level labels available. Applying multiple instance learning-based methods or transformer models is computationally expensive as, for each image, all instances have to be processed simultaneously. The MLP-Mixer is an under-explored alternative model to common vision transformers, especially for large-scale datasets. Due to the lack of a self-attention mechanism, they have linear computational complexity to the number of input patches but achieve comparable performance on natural image datasets. We propose a combination of feature embedding and clustering to preprocess the full whole-slide image into a reduced prototype representation which can then serve as input to a suitable MLP-Mixer architecture. Our experiments on two public benchmarks and one inhouse malignant lymphoma dataset show comparable performance to current state-of-the-art methods, while achieving lower training costs in terms of computational time and memory load. Code is publicly available at //github.com/butkej/ProtoMixer.

Recently, learned video compression has achieved exciting performance. Following the traditional hybrid prediction coding framework, most learned methods generally adopt the motion estimation motion compensation (MEMC) method to remove inter-frame redundancy. However, inaccurate motion vector (MV) usually lead to the distortion of reconstructed frame. In addition, most approaches ignore the spatial and channel redundancy. To solve above problems, we propose a motion-aware and spatial-temporal-channel contextual coding based video compression network (MASTC-VC), which learns the latent representation and uses variational autoencoders (VAEs) to capture the characteristics of intra-frame pixels and inter-frame motion. Specifically, we design a multiscale motion-aware module (MS-MAM) to estimate spatial-temporal-channel consistent motion vector by utilizing the multiscale motion prediction information in a coarse-to-fine way. On the top of it, we further propose a spatial-temporal-channel contextual module (STCCM), which explores the correlation of latent representation to reduce the bit consumption from spatial, temporal and channel aspects respectively. Comprehensive experiments show that our proposed MASTC-VC is surprior to previous state-of-the-art (SOTA) methods on three public benchmark datasets. More specifically, our method brings average 10.15\% BD-rate savings against H.265/HEVC (HM-16.20) in PSNR metric and average 23.93\% BD-rate savings against H.266/VVC (VTM-13.2) in MS-SSIM metric.

Recent advances in whole-slide image (WSI) scanners and computational capabilities have significantly propelled the application of artificial intelligence in histopathology slide analysis. While these strides are promising, current supervised learning approaches for WSI analysis come with the challenge of exhaustively labeling high-resolution slides - a process that is both labor-intensive and time-consuming. In contrast, self-supervised learning (SSL) pretraining strategies are emerging as a viable alternative, given that they don't rely on explicit data annotations. These SSL strategies are quickly bridging the performance disparity with their supervised counterparts. In this context, we introduce an SSL framework. This framework aims for transferable representation learning and semantically meaningful clustering by synergizing invariance loss and clustering loss in WSI analysis. Notably, our approach outperforms common SSL methods in downstream classification and clustering tasks, as evidenced by tests on the Camelyon16 and a pancreatic cancer dataset. The code and additional details are accessible at: //github.com/wwyi1828/CluSiam.

Microscopic image segmentation is a challenging task, wherein the objective is to assign semantic labels to each pixel in a given microscopic image. While convolutional neural networks (CNNs) form the foundation of many existing frameworks, they often struggle to explicitly capture long-range dependencies. Although transformers were initially devised to address this issue using self-attention, it has been proven that both local and global features are crucial for addressing diverse challenges in microscopic images, including variations in shape, size, appearance, and target region density. In this paper, we introduce SA2-Net, an attention-guided method that leverages multi-scale feature learning to effectively handle diverse structures within microscopic images. Specifically, we propose scale-aware attention (SA2) module designed to capture inherent variations in scales and shapes of microscopic regions, such as cells, for accurate segmentation. This module incorporates local attention at each level of multi-stage features, as well as global attention across multiple resolutions. Furthermore, we address the issue of blurred region boundaries (e.g., cell boundaries) by introducing a novel upsampling strategy called the Adaptive Up-Attention (AuA) module. This module enhances the discriminative ability for improved localization of microscopic regions using an explicit attention mechanism. Extensive experiments on five challenging datasets demonstrate the benefits of our SA2-Net model. Our source code is publicly available at \url{//github.com/mustansarfiaz/SA2-Net}.

Trendy suggestions for learning-based elastic warps enable the deep image stitchings to align images exposed to large parallax errors. Despite the remarkable alignments, the methods struggle with occasional holes or discontinuity between overlapping and non-overlapping regions of a target image as the applied training strategy mostly focuses on overlap region alignment. As a result, they require additional modules such as seam finder and image inpainting for hiding discontinuity and filling holes, respectively. In this work, we suggest Recurrent Elastic Warps (REwarp) that address the problem with Dirichlet boundary condition and boost performances by residual learning for recurrent misalign correction. Specifically, REwarp predicts a homography and a Thin-plate Spline (TPS) under the boundary constraint for discontinuity and hole-free image stitching. Our experiments show the favorable aligns and the competitive computational costs of REwarp compared to the existing stitching methods. Our source code is available at //github.com/minshu-kim/REwarp.

Medical image fusion integrates the complementary diagnostic information of the source image modalities for improved visualization and analysis of underlying anomalies. Recently, deep learning-based models have excelled the conventional fusion methods by executing feature extraction, feature selection, and feature fusion tasks, simultaneously. However, most of the existing convolutional neural network (CNN) architectures use conventional pooling or strided convolutional strategies to downsample the feature maps. It causes the blurring or loss of important diagnostic information and edge details available in the source images and dilutes the efficacy of the feature extraction process. Therefore, this paper presents an end-to-end unsupervised fusion model for multimodal medical images based on an edge-preserving dense autoencoder network. In the proposed model, feature extraction is improved by using wavelet decomposition-based attention pooling of feature maps. This helps in preserving the fine edge detail information present in both the source images and enhances the visual perception of fused images. Further, the proposed model is trained on a variety of medical image pairs which helps in capturing the intensity distributions of the source images and preserves the diagnostic information effectively. Substantial experiments are conducted which demonstrate that the proposed method provides improved visual and quantitative results as compared to the other state-of-the-art fusion methods.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司