亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The topological entropy of a topological dynamical system, introduced in a foundational paper by Adler, Konheim and McAndrew [Trans. Am. Math. Soc., 1965], is a nonnegative number that measures the uncertainty or disorder of the system. Comparing with positive entropy systems, zero entropy systems are much less understood. In order to distinguish between zero entropy systems, Huang and Ye [Adv. Math., 2009] introduced the concept of maximal pattern entropy of a topological dynamical system. At the heart of their analysis is a Sauer-Shelah type lemma. In the present paper, we provide a shorter and more conceptual proof of a strengthening of this lemma, and discuss its surprising connection between dynamical system, combinatorics and a recent breakthrough in communication complexity. We also improve one of the main results of Huang and Ye on the maximal pattern entropy of zero-dimensional systems, by proving a new Sauer-Shelah type lemma, which unifies and enhances various extremal results on VC-dimension, Natarajan dimension and Steele dimension.

相關內容

Stochastic Primal-Dual Hybrid Gradient (SPDHG) is an algorithm proposed by Chambolle et al. (2018) to efficiently solve a wide class of nonsmooth large-scale optimization problems. In this paper we contribute to its theoretical foundations and prove its almost sure convergence for convex but neither necessarily strongly convex nor smooth functionals, as well as for any random sampling. In addition, we study SPDHG for parallel Magnetic Resonance Imaging reconstruction, where data from different coils are randomly selected at each iteration. We apply SPDHG using a wide range of random sampling methods and compare its performance across a range of settings, including mini-batch size and step size parameters. We show that the sampling can significantly affect the convergence speed of SPDHG and for many cases an optimal sampling can be identified.

The characterization of the solution set for a class of algebraic Riccati inequalities is studied. This class arises in the passivity analysis of linear time invariant control systems. Eigenvalue perturbation theory for the Hamiltonian matrix associated with the Riccati inequality is used to analyze the extremal points of the solution set.

Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.

We introduce numerical solvers for the steady-state Boltzmann equation based on the symmetric Gauss-Seidel (SGS) method. Due to the quadratic collision operator in the Boltzmann equation, the SGS method requires solving a nonlinear system on each grid cell, and we consider two methods, namely Newton's method and the fixed-point iteration, in our numerical tests. For small Knudsen numbers, our method has an efficiency between the classical source iteration and the modern generalized synthetic iterative scheme, and the complexity of its implementation is closer to the source iteration. A variety of numerical tests are carried out to demonstrate its performance, and it is concluded that the proposed method is suitable for applications with moderate to large Knudsen numbers.

The high-index saddle dynamics (HiSD) method [J. Yin, L. Zhang, and P. Zhang, {\it SIAM J. Sci. Comput., }41 (2019), pp.A3576-A3595] serves as an efficient tool for computing index-$k$ saddle points and constructing solution landscapes. Nevertheless, the conventional HiSD method often encounters slow convergence rates on ill-conditioned problems. To address this challenge, we propose an accelerated high-index saddle dynamics (A-HiSD) by incorporating the heavy ball method. We prove the linear stability theory of the continuous A-HiSD, and subsequently estimate the local convergence rate for the discrete A-HiSD. Our analysis demonstrates that the A-HiSD method exhibits a faster convergence rate compared to the conventional HiSD method, especially when dealing with ill-conditioned problems. We also perform various numerical experiments including the loss function of neural network to substantiate the effectiveness and acceleration of the A-HiSD method.

Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.

The simulation of geological facies in an unobservable volume is essential in various geoscience applications. Given the complexity of the problem, deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models, in particular their lack of physical realism. This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally simulating meandering channels in underground volumes. In this paper, we review the generative deep learning approaches, in particular the adversarial ones and the stabilization techniques that aim to facilitate their training. The proposed approach is tested on 2D and 3D simulations generated by the stochastic process-based model Flumy. Morphological metrics are utilized to compare our proposed method with earlier iterations of generative adversarial networks. The results indicate that by utilizing recent stabilization techniques, generative adversarial networks can efficiently sample from target data distributions. Moreover, we demonstrate the ability to simulate conditioned simulations through the latent variable model property of the proposed approach.

We consider estimation of a normal mean matrix under the Frobenius loss. Motivated by the Efron--Morris estimator, a generalization of Stein's prior has been recently developed, which is superharmonic and shrinks the singular values towards zero. The generalized Bayes estimator with respect to this prior is minimax and dominates the maximum likelihood estimator. However, here we show that it is inadmissible by using Brown's condition. Then, we develop two types of priors that provide improved generalized Bayes estimators and examine their performance numerically. The proposed priors attain risk reduction by adding scalar shrinkage or column-wise shrinkage to singular value shrinkage. Parallel results for Bayesian predictive densities are also given.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense.

We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent $s\to 0^+$). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable \emph{log}-weighted spaces. Numerical evidence suggests that this type of rate cannot be improved. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at $s=0$. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.

北京阿比特科技有限公司