Tokenisation is a core part of language models (LMs). It involves splitting a character sequence into subwords which are assigned arbitrary indices before being served to the LM. While typically lossless, however, this process may lead to less sample efficient LM training: as it removes character-level information, it could make it harder for LMs to generalise across similar subwords, such as now and Now. We refer to such subwords as near duplicates. In this paper, we study the impact of near duplicate subwords on LM training efficiency. First, we design an experiment that gives us an upper bound to how much we should expect a model to improve if we could perfectly generalise across near duplicates. We do this by duplicating each subword in our LM's vocabulary, creating perfectly equivalent classes of subwords. Experimentally, we find that LMs need roughly 17% more data when trained in a fully duplicated setting. Second, we investigate the impact of naturally occurring near duplicates on LMs. Here, we see that merging them considerably hurts LM performance. Therefore, although subword duplication negatively impacts LM training efficiency, naturally occurring near duplicates may not be as similar as anticipated, limiting the potential for performance improvements.
Face Recognition Systems (FRS) have increasingly integrated into critical applications, including surveillance and user authentication, highlighting their pivotal role in modern security systems. Recent studies have revealed vulnerabilities in FRS to adversarial (e.g., adversarial patch attacks) and backdoor attacks (e.g., training data poisoning), raising significant concerns about their reliability and trustworthiness. Previous studies primarily focus on traditional adversarial or backdoor attacks, overlooking the resource-intensive or privileged-manipulation nature of such threats, thus limiting their practical generalization, stealthiness, universality and robustness. Correspondingly, in this paper, we delve into the inherent vulnerabilities in FRS through user studies and preliminary explorations. By exploiting these vulnerabilities, we identify a novel attack, facial identity backdoor attack dubbed FIBA, which unveils a potentially more devastating threat against FRS:an enrollment-stage backdoor attack. FIBA circumvents the limitations of traditional attacks, enabling broad-scale disruption by allowing any attacker donning a specific trigger to bypass these systems. This implies that after a single, poisoned example is inserted into the database, the corresponding trigger becomes a universal key for any attackers to spoof the FRS. This strategy essentially challenges the conventional attacks by initiating at the enrollment stage, dramatically transforming the threat landscape by poisoning the feature database rather than the training data.
In the era of generative artificial intelligence (AI), the fusion of large language models (LLMs) offers unprecedented opportunities for innovation in the field of modern education. We embark on an exploration of prompted LLMs within the context of educational and assessment applications to uncover their potential. Through a series of carefully crafted research questions, we investigate the effectiveness of prompt-based techniques in generating open-ended questions from school-level textbooks, assess their efficiency in generating open-ended questions from undergraduate-level technical textbooks, and explore the feasibility of employing a chain-of-thought inspired multi-stage prompting approach for language-agnostic multiple-choice question (MCQ) generation. Additionally, we evaluate the ability of prompted LLMs for language learning, exemplified through a case study in the low-resource Indian language Bengali, to explain Bengali grammatical errors. We also evaluate the potential of prompted LLMs to assess human resource (HR) spoken interview transcripts. By juxtaposing the capabilities of LLMs with those of human experts across various educational tasks and domains, our aim is to shed light on the potential and limitations of LLMs in reshaping educational practices.
Large language models (LLMs) have received considerable attention recently due to their outstanding comprehension and reasoning capabilities, leading to great progress in many fields. The advancement of LLM techniques also offers promising opportunities to automate many tasks in the telecommunication (telecom) field. After pre-training and fine-tuning, LLMs can perform diverse downstream tasks based on human instructions, paving the way to artificial general intelligence (AGI)-enabled 6G. Given the great potential of LLM technologies, this work aims to provide a comprehensive overview of LLM-enabled telecom networks. In particular, we first present LLM fundamentals, including model architecture, pre-training, fine-tuning, inference and utilization, model evaluation, and telecom deployment. Then, we introduce LLM-enabled key techniques and telecom applications in terms of generation, classification, optimization, and prediction problems. Specifically, the LLM-enabled generation applications include telecom domain knowledge, code, and network configuration generation. After that, the LLM-based classification applications involve network security, text, image, and traffic classification problems. Moreover, multiple LLM-enabled optimization techniques are introduced, such as automated reward function design for reinforcement learning and verbal reinforcement learning. Furthermore, for LLM-aided prediction problems, we discussed time-series prediction models and multi-modality prediction problems for telecom. Finally, we highlight the challenges and identify the future directions of LLM-enabled telecom networks.
Interactive theorem provers, like Isabelle/HOL, Coq and Lean, have expressive languages that allow the formalization of general mathematical objects and proofs. In this context, an important goal is to reduce the time and effort needed to prove theorems. A significant means of achieving this is by improving proof automation. We have implemented an early prototype of proof automation for equational reasoning in Lean by using equality saturation. To achieve this, we need to bridge the gap between Lean's expression semantics and the syntactically driven e-graphs in equality saturation. This involves handling bound variables, implicit typing, as well as Lean's definitional equality, which is more general than syntactic equality and involves notions like $\alpha$-equivalence, $\beta$-reduction, and $\eta$-reduction. In this extended abstract, we highlight how we attempt to bridge this gap, and which challenges remain to be solved. Notably, while our techniques are partially unsound, the resulting proof automation remains sound by virtue of Lean's proof checking.
Large language models (LLMs) often exhibit undesirable behaviours, such as generating untruthful or biased content. Editing their internal representations has been shown to be effective in mitigating such behaviours on top of the existing alignment methods. We propose a novel inference-time editing method, namely spectral editing of activations (SEA), to project the input representations into directions with maximal covariance with the positive demonstrations (e.g., truthful) while minimising covariance with the negative demonstrations (e.g., hallucinated). We also extend our method to non-linear editing using feature functions. We run extensive experiments on benchmarks concerning truthfulness and bias with six open-source LLMs of different sizes and model families. The results demonstrate the superiority of SEA in effectiveness, generalisation to similar tasks, as well as inference and data efficiency. We also show that SEA editing only has a limited negative impact on other model capabilities.
Large language models (LLMs), such as ChatGPT, have received substantial attention due to their capabilities for understanding and generating human language. While there has been a burgeoning trend in research focusing on the employment of LLMs in supporting different medical tasks (e.g., enhancing clinical diagnostics and providing medical education), a review of these efforts, particularly their development, practical applications, and outcomes in medicine, remains scarce. Therefore, this review aims to provide a detailed overview of the development and deployment of LLMs in medicine, including the challenges and opportunities they face. In terms of development, we provide a detailed introduction to the principles of existing medical LLMs, including their basic model structures, number of parameters, and sources and scales of data used for model development. It serves as a guide for practitioners in developing medical LLMs tailored to their specific needs. In terms of deployment, we offer a comparison of the performance of different LLMs across various medical tasks, and further compare them with state-of-the-art lightweight models, aiming to provide an understanding of the advantages and limitations of LLMs in medicine. Overall, in this review, we address the following questions: 1) What are the practices for developing medical LLMs 2) How to measure the medical task performance of LLMs in a medical setting? 3) How have medical LLMs been employed in real-world practice? 4) What challenges arise from the use of medical LLMs? and 5) How to more effectively develop and deploy medical LLMs? By answering these questions, this review aims to provide insights into the opportunities for LLMs in medicine and serve as a practical resource. We also maintain a regularly updated list of practical guides on medical LLMs at: //github.com/AI-in-Health/MedLLMsPracticalGuide.
Vision-language models (VLMs) are impactful in part because they can be applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning. We study $\textit{generative VLMs}$ that are trained for next-word generation given an image. We explore their zero-shot performance on the illustrative task of image-text retrieval across 8 popular vision-language benchmarks. Our first observation is that they can be repurposed for discriminative tasks (such as image-text retrieval) by simply computing the match score of generating a particular text string given an image. We call this probabilistic score the $\textit{Visual Generative Pre-Training Score}$ (VisualGPTScore). While the VisualGPTScore produces near-perfect accuracy on some retrieval benchmarks, it yields poor accuracy on others. We analyze this behavior through a probabilistic lens, pointing out that some benchmarks inadvertently capture unnatural language distributions by creating adversarial but unlikely text captions. In fact, we demonstrate that even a "blind" language model that ignores any image evidence can sometimes outperform all prior art, reminiscent of similar challenges faced by the visual-question answering (VQA) community many years ago. We derive a probabilistic post-processing scheme that controls for the amount of linguistic bias in generative VLMs at test time without having to retrain or fine-tune the model. We show that the VisualGPTScore, when appropriately debiased, is a strong zero-shot baseline for vision-language understanding, oftentimes producing state-of-the-art accuracy.
Sign language has been extensively studied as a means of facilitating effective communication between hearing individuals and the deaf community. With the continuous advancements in virtual reality (VR) and gamification technologies, an increasing number of studies have begun to explore the application of these emerging technologies in sign language learning. This paper describes a user study that compares the impact of 2D and 3D games on the user experience in ASL learning. Empirical evidence gathered through questionnaires supports the positive impact of 3D game environments on user engagement and overall experience, particularly in relation to attractiveness, usability, and efficiency. Moreover, initial findings demonstrate a similar behaviour of 2D and 3D games in terms of enhancing user experience. Finally, the study identifies areas where improvements can be made to enhance the dependability and clarity of 3D game environments. These findings contribute to the understanding of how game-based approaches, and specifically the utilisation of 3D environments, can positively influence the learning experience of ASL.
Large language models (LLMs) have become crucial for many generative downstream tasks, leading to an inevitable trend and significant challenge to deploy them efficiently on resource-constrained devices. Structured pruning is a widely used method to address this challenge. However, when dealing with the complex structure of the multiple decoder layers, general methods often employ common estimation approaches for pruning. These approaches lead to a decline in accuracy for specific downstream tasks. In this paper, we introduce a simple yet efficient method that adaptively models the importance of each substructure. Meanwhile, it can adaptively fuse coarse-grained and finegrained estimations based on the results from complex and multilayer structures. All aspects of our design seamlessly integrate into the endto-end pruning framework. Our experimental results, compared with state-of-the-art methods on mainstream datasets, demonstrate average accuracy improvements of 1.1%, 1.02%, 2.0%, and 1.2% for LLaMa-7B,Vicuna-7B, Baichuan-7B, and Bloom-7b1, respectively.
The Independence Postulate (IP) is a finitary Church-Turing Thesis, saying mathematical sequences are independent from physical ones. Modelling observations as infinite sequences of real numbers, IP implies the existence of anomalies.