亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the fundamental problems in shape analysis is to align curves or surfaces before computing geodesic distances between their shapes. Finding the optimal reparametrization realizing this alignment is a computationally demanding task, typically done by solving an optimization problem on the diffeomorphism group. In this paper, we propose an algorithm for constructing approximations of orientation-preserving diffeomorphisms by composition of elementary diffeomorphisms. The algorithm is implemented using PyTorch, and is applicable for both unparametrized curves and surfaces. Moreover, we show universal approximation properties for the constructed architectures, and obtain bounds for the Lipschitz constants of the resulting diffeomorphisms.

相關內容

The Navier equation is the governing equation of elastic waves, and computing its solution accurately and rapidly has a wide range of applications in geophysical exploration, materials science, etc. In this paper, we focus on the efficient and high-precision numerical algorithm for the time harmonic elastic wave scattering problems from cornered domains via the boundary integral equations in two dimensions. The approach is based on the combination of Nystr\"om discretization, analytical singular integrals and kernel-splitting method, which results in a high-order solver for smooth boundaries. It is then combined with the recursively compressed inverse preconditioning (RCIP) method to solve elastic scattering problems from cornered domains. Numerical experiments demonstrate that the proposed approach achieves high accuracy, with stabilized errors close to machine precision in various geometric configurations. The algorithm is further applied to investigate the asymptotic behavior of density functions associated with boundary integral operators near corners, and the numerical results are highly consistent with the theoretical formulas.

We describe and analyze a hybrid finite element/neural network method for predicting solutions of partial differential equations. The methodology is designed for obtaining fine scale fluctuations from neural networks in a local manner. The network is capable of locally correcting a coarse finite element solution towards a fine solution taking the source term and the coarse approximation as input. Key observation is the dependency between quality of predictions and the size of training set which consists of different source terms and corresponding fine & coarse solutions. We provide the a priori error analysis of the method together with the stability analysis of the neural network. The numerical experiments confirm the capability of the network predicting fine finite element solutions. We also illustrate the generalization of the method to problems where test and training domains differ from each other.

Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of Inverse Problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in Inverse Problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions we derive a family of tests with prescribed level $\alpha$ and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.

Over the last decade, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples $m$. Our work focuses on providing theoretical approximation guarantees for the class of $(\boldsymbol{b},\varepsilon)$-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of $m$-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.

The accuracy of solving partial differential equations (PDEs) on coarse grids is greatly affected by the choice of discretization schemes. In this work, we propose to learn time integration schemes based on neural networks which satisfy three distinct sets of mathematical constraints, i.e., unconstrained, semi-constrained with the root condition, and fully-constrained with both root and consistency conditions. We focus on the learning of 3-step linear multistep methods, which we subsequently applied to solve three model PDEs, i.e., the one-dimensional heat equation, the one-dimensional wave equation, and the one-dimensional Burgers' equation. The results show that the prediction error of the learned fully-constrained scheme is close to that of the Runge-Kutta method and Adams-Bashforth method. Compared to the traditional methods, the learned unconstrained and semi-constrained schemes significantly reduce the prediction error on coarse grids. On a grid that is 4 times coarser than the reference grid, the mean square error shows a reduction of up to an order of magnitude for some of the heat equation cases, and a substantial improvement in phase prediction for the wave equation. On a 32 times coarser grid, the mean square error for the Burgers' equation can be reduced by up to 35% to 40%.

In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of $\zeta(3)$. Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science.

Various simulation-based and analytical methods have been developed to evaluate the seismic fragilities of individual structures. However, a community's seismic safety and resilience are substantially affected by network reliability, determined not only by component fragilities but also by network topology and commodity/information flows. However, seismic reliability analyses of networks often encounter significant challenges due to complex network topologies, interdependencies among ground motions, and low failure probabilities. This paper proposes to overcome these challenges by a variance-reduction method for network fragility analysis using subset simulation. The binary network limit-state function in the subset simulation is reformulated into more informative piecewise continuous functions. The proposed limit-state functions quantify the proximity of each sample to a potential network failure domain, thereby enabling the construction of specialized intermediate failure events, which can be utilized in subset simulation and other sequential Monte Carlo approaches. Moreover, by discovering an implicit connection between intermediate failure events and seismic intensity, we propose a technique to obtain the entire network fragility curve with a single execution of specialized subset simulation. Numerical examples demonstrate that the proposed method can effectively evaluate system-level fragility for large-scale networks.

Approximation of high-dimensional functions is a problem in many scientific fields that is only feasible if advantageous structural properties, such as sparsity in a given basis, can be exploited. A relevant tool for analysing sparse approximations is Stechkin's lemma. In its standard form, however, this lemma does not allow to explain convergence rates for a wide range of relevant function classes. This work presents a new weighted version of Stechkin's lemma that improves the best $n$-term rates for weighted $\ell^p$-spaces and associated function classes such as Sobolev or Besov spaces. For the class of holomorphic functions, which occur as solutions of common high-dimensional parameter-dependent PDEs, we recover exponential rates that are not directly obtainable with Stechkin's lemma. Since weighted $\ell^p$-summability induces weighted sparsity, compressed sensing algorithms can be used to approximate the associated functions. To break the curse of dimensionality, which these algorithms suffer, we recall that sparse approximations can be encoded efficiently using tensor networks with sparse component tensors. We also demonstrate that weighted $\ell^p$-summability induces low ranks, which motivates a second tensor train format with low ranks and a single weighted sparse core. We present new alternating algorithms for best $n$-term approximation in both formats. To analyse the sample complexity for the new model classes, we derive a novel result of independent interest that allows the transfer of the restricted isometry property from one set to another sufficiently close set. Although they lead up to the analysis of our final model class, our contributions on weighted Stechkin and the restricted isometry property are of independent interest and can be read independently.

Physics informed neural network (PINN) based solution methods for differential equations have recently shown success in a variety of scientific computing applications. Several authors have reported difficulties, however, when using PINNs to solve equations with multiscale features. The objective of the present work is to illustrate and explain the difficulty of using standard PINNs for the particular case of divergence-form elliptic partial differential equations (PDEs) with oscillatory coefficients present in the differential operator. We show that if the coefficient in the elliptic operator $a^{\epsilon}(x)$ is of the form $a(x/\epsilon)$ for a 1-periodic coercive function $a(\cdot)$, then the Frobenius norm of the neural tangent kernel (NTK) matrix associated to the loss function grows as $1/\epsilon^2$. This implies that as the separation of scales in the problem increases, training the neural network with gradient descent based methods to achieve an accurate approximation of the solution to the PDE becomes increasingly difficult. Numerical examples illustrate the stiffness of the optimization problem.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司