亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Navier equation is the governing equation of elastic waves, and computing its solution accurately and rapidly has a wide range of applications in geophysical exploration, materials science, etc. In this paper, we focus on the efficient and high-precision numerical algorithm for the time harmonic elastic wave scattering problems from cornered domains via the boundary integral equations in two dimensions. The approach is based on the combination of Nystr\"om discretization, analytical singular integrals and kernel-splitting method, which results in a high-order solver for smooth boundaries. It is then combined with the recursively compressed inverse preconditioning (RCIP) method to solve elastic scattering problems from cornered domains. Numerical experiments demonstrate that the proposed approach achieves high accuracy, with stabilized errors close to machine precision in various geometric configurations. The algorithm is further applied to investigate the asymptotic behavior of density functions associated with boundary integral operators near corners, and the numerical results are highly consistent with the theoretical formulas.

相關內容

We study the uniform approximation of echo state networks with randomly generated internal weights. These models, in which only the readout weights are optimized during training, have made empirical success in learning dynamical systems. Recent results showed that echo state networks with ReLU activation are universal. In this paper, we give an alternative construction and prove that the universality holds for general activation functions. Specifically, our main result shows that, under certain condition on the activation function, there exists a sampling procedure for the internal weights so that the echo state network can approximate any continuous casual time-invariant operators with high probability. In particular, for ReLU activation, we give explicit construction for these sampling procedures. We also quantify the approximation error of the constructed ReLU echo state networks for sufficiently regular operators.

A new scheme is proposed to construct an n-times differentiable function extension of an n-times differentiable function defined on a smooth domain D in d-dimensions. The extension scheme relies on an explicit formula consisting of a linear combination of n+1 function values in D, which extends the function along directions normal to the boundary. Smoothness tangent to the boundary is automatic. The performance of the scheme is illustrated by using function extension as a step in a numerical solver for the inhomogeneous Poisson equation on multiply connected domains with complex geometry in two and three dimensions. We show that the modest additional work needed to do function extension leads to considerably more accurate solutions of the partial differential equation.

This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.

We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.

We propose a geometric integrator to numerically approximate the flow of Lie systems. The key is a novel procedure that integrates the Lie system on a Lie group intrinsically associated with a Lie system on a general manifold via a Lie group action, and then generates the discrete solution of the Lie system on the manifold via a solution of the Lie system on the Lie group. One major result from the integration of a Lie system on a Lie group is that one is able to solve all associated Lie systems on manifolds at the same time, and that Lie systems on Lie groups can be described through first-order systems of linear homogeneous ordinary differential equations (ODEs) in normal form. This brings a lot of advantages, since solving a linear system of ODEs involves less numerical cost. Specifically, we use two families of numerical schemes on the Lie group, which are designed to preserve its geometrical structure: the first one based on the Magnus expansion, whereas the second is based on Runge-Kutta-Munthe-Kaas (RKMK) methods. Moreover, since the aforementioned action relates the Lie group and the manifold where the Lie system evolves, the resulting integrator preserves any geometric structure of the latter. We compare both methods for Lie systems with geometric invariants, particularly a class on Lie systems on curved spaces. We also illustrate the superiority of our method for describing long-term behavior and for differential equations admitting solutions whose geometric features depends heavily on initial conditions. As already mentioned, our milestone is to show that the method we propose preserves all the geometric invariants very faithfully, in comparison with nongeometric numerical methods.

Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.

A nonlinear-manifold reduced order model (NM-ROM) is a great way of incorporating underlying physics principles into a neural network-based data-driven approach. We combine NM-ROMs with domain decomposition (DD) for efficient computation. NM-ROMs offer benefits over linear-subspace ROMs (LS-ROMs) but can be costly to train due to parameter scaling with the full-order model (FOM) size. To address this, we employ DD on the FOM, compute subdomain NM-ROMs, and then merge them into a global NM-ROM. This approach has multiple advantages: parallel training of subdomain NM-ROMs, fewer parameters than global NM-ROMs, and adaptability to subdomain-specific FOM features. Each subdomain NM-ROM uses a shallow, sparse autoencoder, enabling hyper-reduction (HR) for improved computational speed. In this paper, we detail an algebraic DD formulation for the FOM, train HR-equipped NM-ROMs for subdomains, and numerically compare them to DD LS-ROMs with HR. Results show a significant accuracy boost, on the order of magnitude, for the proposed DD NM-ROMs over DD LS-ROMs in solving the 2D steady-state Burgers' equation.

We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.

We analyze the wave equation in mixed form, with periodic and/or Dirichlet homogeneous boundary conditions, and nonconstant coefficients that depend on the spatial variable. For the discretization, the weak form of the second equation is replaced by a strong form, written in terms of a projection operator. The system of equations is discretized with B-splines forming a De Rham complex along with suitable commutative projectors for the approximation of the second equation. The discrete scheme is energy conservative when discretized in time with a conservative method such as Crank-Nicolson. We propose a convergence analysis of the method to study the dependence with respect to the mesh size $h$, with focus on the consistency error. Numerical results show optimal convergence of the error in energy norm, and a relative error in energy conservation for long-time simulations of the order of machine precision.

This paper examines inverse Cauchy problems that are governed by a kind of elliptic partial differential equation. The inverse problems involve recovering the missing data on an inaccessible boundary from the measured data on an accessible boundary, which is severely ill-posed. By using the coupled complex boundary method (CCBM), which integrates both Dirichlet and Neumann data into a single Robin boundary condition, we reformulate the underlying problem into an operator equation. Based on this new formulation, we study the solution existence issue of the reduced problem with noisy data. A Golub-Kahan bidiagonalization (GKB) process together with Givens rotation is employed for iteratively solving the proposed operator equation. The regularizing property of the developed method, called CCBM-GKB, and its convergence rate results are proved under a posteriori stopping rule. Finally, a linear finite element method is used for the numerical realization of CCBM-GKB. Various numerical experiments demonstrate that CCBM-GKB is a kind of accelerated iterative regularization method, as it is much faster than the classic Landweber method.

北京阿比特科技有限公司