亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Privacy enhancing technologies (PETs) have been proposed as a way to protect the privacy of data while still allowing for data analysis. In this work, we focus on Fully Homomorphic Encryption (FHE), a powerful tool that allows for arbitrary computations to be performed on encrypted data. FHE has received lots of attention in the past few years and has reached realistic execution times and correctness. More precisely, we explain in this paper how we apply FHE to tree-based models and get state-of-the-art solutions over encrypted tabular data. We show that our method is applicable to a wide range of tree-based models, including decision trees, random forests, and gradient boosted trees, and has been implemented within the Concrete-ML library, which is open-source at //github.com/zama-ai/concrete-ml. With a selected set of use-cases, we demonstrate that our FHE version is very close to the unprotected version in terms of accuracy.

相關內容

Although Connected Vehicles (CVs) have demonstrated tremendous potential to enhance traffic operations, they can impose privacy risks on individual travelers, e.g., leaking sensitive information about their frequently visited places, routing behavior, etc. Despite the large body of literature that devises various algorithms to exploit CV information, research on privacy-preserving traffic control is still in its infancy. In this paper, we aim to fill this research gap and propose a privacy-preserving adaptive traffic signal control method using CV data. Specifically, we leverage secure Multi-Party Computation and differential privacy to devise a privacy-preserving CV data aggregation mechanism, which can calculate key traffic quantities without any CVs having to reveal their private data. We further develop a linear optimization model for adaptive signal control based on the traffic variables obtained via the data aggregation mechanism. The proposed linear programming problem is further extended to a stochastic programming problem to explicitly handle the noises added by the differentially private mechanism. Evaluation results show that the linear optimization model preserves privacy with a marginal impact on control performance, and the stochastic programming model can significantly reduce residual queues compared to the linear programming model, with almost no increase in vehicle delay. Overall, our methods demonstrate the feasibility of incorporating privacy-preserving mechanisms in CV-based traffic modeling and control, which guarantees both utility and privacy.

Dataset obfuscation refers to techniques in which random noise is added to the entries of a given dataset, prior to its public release, to protect against leakage of private information. In this work, dataset obfuscation under two objectives is considered: i) rank-preservation: to preserve the row ordering in the obfuscated dataset induced by a given rank function, and ii) anonymity: to protect user anonymity under fingerprinting attacks. The first objective, rank-preservation, is of interest in applications such as the design of search engines and recommendation systems, feature matching, and social network analysis. Fingerprinting attacks, considered in evaluating the anonymity objective, are privacy attacks where an attacker constructs a fingerprint of a victim based on its observed activities, such as online web activities, and compares this fingerprint with information extracted from a publicly released obfuscated dataset to identify the victim. By evaluating the performance limits of a class of obfuscation mechanisms over asymptotically large datasets, a fundamental trade-off is quantified between rank-preservation and user anonymity. Single-letter obfuscation mechanisms are considered, where each entry in the dataset is perturbed by independent noise, and their fundamental performance limits are characterized by leveraging large deviation techniques. The optimal obfuscating test-channel, optimizing the privacy-utility tradeoff, is characterized in the form of a convex optimization problem which can be solved efficiently. Numerical simulations of various scenarios are provided to verify the theoretical derivations.

Gradient-boosted decision trees (GBDT) are widely used and highly effective machine learning approach for tabular data modeling. However, their complex structure may lead to low robustness against small covariate perturbation in unseen data. In this study, we apply one-hot encoding to convert a GBDT model into a linear framework, through encoding of each tree leaf to one dummy variable. This allows for the use of linear regression techniques, plus a novel risk decomposition for assessing the robustness of a GBDT model against covariate perturbations. We propose to enhance the robustness of GBDT models by refitting their linear regression forms with $L_1$ or $L_2$ regularization. Theoretical results are obtained about the effect of regularization on the model performance and robustness. It is demonstrated through numerical experiments that the proposed regularization approach can enhance the robustness of the one-hot-encoded GBDT models.

Single sign-on (SSO) allows users to authenticate to third-party applications through a central identity provider. Despite their wide adoption, deployed SSO systems suffer from privacy problems such as user tracking by the identity provider. While numerous solutions have been proposed by academic papers, none were adopted because they require modifying identity providers, a significant adoption barrier in practice. Solutions do get deployed, however, fail to eliminate major privacy issues. Leveraging Trusted Execution Environments (TEEs), we propose MISO, the first privacy-preserving SSO system that is completely compatible with existing identity providers (such as Google and Facebook). This means MISO can be easily integrated into existing SSO ecosystem today and benefit end users. MISO also enables new functionality that standard SSO cannot offer: MISO allows users to leverage multiple identity providers in a single SSO workflow, potentially in a threshold fashion, to better protect user accounts. We fully implemented MISO based on Intel SGX. Our evaluation shows that MISO can handle high user concurrency with practical performance.

Distributed computing is known as an emerging and efficient technique to support various intelligent services, such as large-scale machine learning. However, privacy leakage and random delays from straggling servers pose significant challenges. To address these issues, coded computing, a promising solution that combines coding theory with distributed computing, recovers computation tasks with results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, which can adaptively provide accurate or approximated results according to the form of computation functions, so as to suit diverse types of computation tasks. We prove that APCC achieves complete data privacy preservation and demonstrate its optimality in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding. To further alleviate the straggling effect and reduce delay, we integrate hierarchical task partitioning and task cancellation into the coding design of APCC. The corresponding partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. Simulation results show that APCC can reduce task completion delay by at least 42.9% compared to other state-of-the-art benchmarks.

Homomorphic encryption is a sophisticated encryption technique that allows computations on encrypted data to be done without the requirement for decryption. This trait makes homomorphic encryption appropriate for safe computation in sensitive data scenarios, such as cloud computing, medical data exchange, and financial transactions. The data is encrypted using a public key in homomorphic encryption, and the calculation is conducted on the encrypted data using an algorithm that retains the encryption. The computed result is then decrypted with a private key to acquire the final output. This abstract notion protects data while allowing complicated computations to be done on the encrypted data, resulting in a secure and efficient approach to analysing sensitive information. This article is intended to give a clear idea about the various fully Homomorphic Encryption Schemes present in the literature and analyse and compare the results of each of these schemes. Further, we also provide applications and open-source tools of homomorphic encryption schemes.

In this paper, we present a practical solution to implement privacy-preserving CNN training based on mere Homomorphic Encryption (HE) technique. To our best knowledge, this is the first attempt successfully to crack this nut and no work ever before has achieved this goal. Several techniques combine to accomplish the task:: (1) with transfer learning, privacy-preserving CNN training can be reduced to homomorphic neural network training, or even multiclass logistic regression (MLR) training; (2) via a faster gradient variant called $\texttt{Quadratic Gradient}$, an enhanced gradient method for MLR with a state-of-the-art performance in convergence speed is applied in this work to achieve high performance; (3) we employ the thought of transformation in mathematics to transform approximating Softmax function in the encryption domain to the approximation of the Sigmoid function. A new type of loss function termed $\texttt{Squared Likelihood Error}$ has been developed alongside to align with this change.; and (4) we use a simple but flexible matrix-encoding method named $\texttt{Volley Revolver}$ to manage the data flow in the ciphertexts, which is the key factor to complete the whole homomorphic CNN training. The complete, runnable C++ code to implement our work can be found at: \href{//github.com/petitioner/HE.CNNtraining}{$\texttt{//github.com/petitioner/HE.CNNtraining}$}. We select $\texttt{REGNET\_X\_400MF}$ as our pre-trained model for transfer learning. We use the first 128 MNIST training images as training data and the whole MNIST testing dataset as the testing data. The client only needs to upload 6 ciphertexts to the cloud and it takes $\sim 21$ mins to perform 2 iterations on a cloud with 64 vCPUs, resulting in a precision of $21.49\%$.

Logistic regression training over encrypted data has been an attractive idea to security concerns for years. In this paper, we propose a faster gradient variant called $\texttt{quadratic gradient}$ for privacy-preserving logistic regression training. The core of $\texttt{quadratic gradient}$ can be seen as an extension of the simplified fixed Hessian. We enhance Nesterov's accelerated gradient (NAG) and Adaptive Gradient Algorithm (Adagrad) respectively with $\texttt{quadratic gradient}$ and evaluate the enhanced algorithms on several datasets. %gradient $ascent$ methods with this gradient variant on the gene dataset provided by the 2017 iDASH competition and other datasets. Experiments show that the enhanced methods have a state-of-the-art performance in convergence speed compared to the raw first-order gradient methods. We then adopt the enhanced NAG method to implement homomorphic logistic regression training, obtaining a comparable result by only $3$ iterations. There is a promising chance that $\texttt{quadratic gradient}$ could be used to enhance other first-order gradient methods for general numerical optimization problems.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

北京阿比特科技有限公司