A classic conjecture of F\"{u}redi, Kahn and Seymour (1993) states that given any hypergraph with non-negative edge weights $w(e)$, there exists a matching $M$ such that $\sum_{e \in M} (|e|-1+1/|e|)\, w(e) \geq w^*$, where $w^*$ is the value of an optimum fractional matching. We show the conjecture is true for rank-3 hypergraphs, and is achieved by a natural iterated rounding algorithm. While the general conjecture remains open, we give several new improved bounds. In particular, we show that the iterated rounding algorithm gives $\sum_{e \in M} (|e|-\delta(e))\, w(e) \geq w^*$, where $\delta(e) = |e|/(|e|^2+|e|-1)$, improving upon the baseline guarantee of $\sum_{e \in M} |e|\,w(e) \geq w^*$.
We study the mathematical structure of the solution set (and its tangent space) to the matrix equation $G^*JG=J$ for a given square matrix $J$. In the language of pure mathematics, this is a Lie group which is the isometry group for a bilinear (or a sesquilinear) form. Generally these groups are described as intersections of a few special groups. The tangent space to $\{G: G^*JG=J \}$ consists of solutions to the linear matrix equation $X^*J+JX=0$. For the complex case, the solution set of this linear equation was computed by De Ter{\'a}n and Dopico. We found that on its own, the equation $X^*J+JX=0$ is hard to solve. By throwing into the mix the complementary linear equation $X^*J-JX=0$, we find that rather than increasing the complexity, we reduce the complexity. Not only is it possible to now solve the original problem, but we can approach the broader algebraic and geometric structure. One implication is that the two equations form an $\mathfrak{h}$ and $\mathfrak{m}$ pair familiar in the study of pseudo-Riemannian symmetric spaces. We explicitly demonstrate the computation of the solutions to the equation $X^*J\pm XJ=0$ for real and complex matrices. However, any real, complex or quaternionic case with an arbitrary involution (e.g., transpose, conjugate transpose, and the various quaternion transposes) can be effectively solved with the same strategy. We provide numerical examples and visualizations.
Most prior work on online matching problems has been with the flexibility of keeping some vertices unmatched. We study three related online matching problems with the constraint of matching every vertex, i.e., with no rejections. We adopt a model in which vertices arrive in uniformly random order and the non-negative edge-weights are arbitrary. For the capacitated online bipartite matching problem, in which the vertices of one side of the graph are offline and those of the other side arrive online, we give a 4.62-competitive algorithm when the capacity of each offline vertex is 2. For the online general (non-bipartite) matching problem, where all vertices arrive online, we give a 3.34-competitive algorithm. We also study the online roommate matching problem (Huzhang et al. 2017), in which each room (offline vertex) holds 2 persons (online vertices). Persons derive non-negative additive utilities from their room as well as roommate. In this model, with the goal of maximizing the social welfare, we give a 7.96-competitive algorithm. This is an improvement over the 24.72 approximation factor in (Huzhang et al. 2017).
The success of matrix factorizations such as the singular value decomposition (SVD) has motivated the search for even more factorizations. We catalog 53 matrix factorizations, most of which we believe to be new. Our systematic approach, inspired by the generalized Cartan decomposition of Lie theory, also encompasses known factorizations such as the SVD, the symmetric eigendecomposition, the CS decomposition, the hyperbolic SVD, structured SVDs, the Takagi factorization, and others thereby covering familiar matrix factorizations as well as ones that were waiting to be discovered. We suggest that Lie theory has one way or another been lurking hidden in the foundations of the very successful field of matrix computations with applications routinely used in so many areas of computation. In this paper, we investigate consequences of the Cartan decomposition and the little known generalized Cartan decomposition for matrix factorizations. We believe that these factorizations once properly identified can lead to further work on algorithmic computations and applications.
An efficient implicit representation of an $n$-vertex graph $G$ in a family $\mathcal{F}$ of graphs assigns to each vertex of $G$ a binary code of length $O(\log n)$ so that the adjacency between every pair of vertices can be determined only as a function of their codes. This function can depend on the family but not on the individual graph. Every family of graphs admitting such a representation contains at most $2^{O(n\log(n))}$ graphs on $n$ vertices, and thus has at most factorial speed of growth. The Implicit Graph Conjecture states that, conversely, every hereditary graph family with at most factorial speed of growth admits an efficient implicit representation. We refute this conjecture by establishing the existence of hereditary graph families with factorial speed of growth that require codes of length $n^{\Omega(1)}$.
We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weights with an accuracy of R^2 > 95%. Supervised learning also allows us to identify weighted-P4s which admit Calabi-Yau hypersurfaces to 100% accuracy by making use of partitioning supported by the clustering behaviour.
A Boolean maximum constraint satisfaction problem, Max-CSP($f$), is specified by a constraint function $f:\{-1,1\}^k\to\{0,1\}$; an instance on $n$ variables is given by a list of constraints applying $f$ on a tuple of "literals" of $k$ distinct variables chosen from the $n$ variables. Chou, Golovnev, and Velusamy [CGV20] obtained explicit constants characterizing the streaming approximability of all symmetric Max-2CSPs. More recently, Chou, Golovnev, Sudan, and Velusamy [CGSV21] proved a general dichotomy theorem tightly characterizing the approximability of Boolean Max-CSPs with respect to sketching algorithms. For every $f$, they showed that there exists an optimal approximation ratio $\alpha(f)\in (0,1]$ such that for every $\epsilon>0$, Max-CSP($f$) is $(\alpha(f)-\epsilon)$-approximable by a linear sketching algorithm in $O(\log n)$ space, but any $(\alpha(f)+\epsilon)$-approximation sketching algorithm for Max-CSP($f$) requires $\Omega(\sqrt{n})$ space. In this work, we build on the [CGSV21] dichotomy theorem and give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. The functions include $k$AND and Th$_k^{k-1}$ (the ``weight-at-least-$(k-1)$'' threshold function on $k$ variables). In particular, letting $\alpha'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}$, we show that for odd $k \geq 3$, $\alpha(k$AND$ = \alpha'_k$; for even $k \geq 2$, $\alpha(k$AND$) = 2\alpha'_{k+1}$; and for even $k \geq 2$, $\alpha($Th$_k^{k-1}) = \frac{k}2\alpha'_{k-1}$. We also resolve the ratio for the ``weight-exactly-$\frac{k+1}2$'' function for odd $k \in \{3,\ldots,51\}$ as well as fifteen other functions. These closed-form expressions need not have existed just given the [CGSV21] dichotomy. For arbitrary threshold functions, we also give optimal "bias-based" approximation algorithms generalizing [CGV20] and simplifying [CGSV21].
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(\Delta + \log^* n)$ communication rounds; here $n$ is the number of nodes and $\Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(\log^* n)$ rounds even if $\Delta = 2$. However, the dependency on $\Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that any algorithm that finds a maximal matching or maximal independent set with probability at least $1-1/n$ requires $\Omega(\min\{\Delta,\log \log n / \log \log \log n\})$ rounds in the LOCAL model of distributed computing. As a corollary, it follows that any deterministic algorithm that finds a maximal matching or maximal independent set requires $\Omega(\min\{\Delta, \log n / \log \log n\})$ rounds; this is an improvement over prior lower bounds also as a function of $n$.
For a graph $G=(V,E)$, a subset $D$ of vertex set $V$, is a dominating set of $G$ if every vertex not in $D$ is adjacent to atleast one vertex of $D$. A dominating set $D$ of a graph $G$ with no isolated vertices is called a paired dominating set (PD-set), if $G[D]$, the subgraph induced by $D$ in $G$ has a perfect matching. The Min-PD problem requires to compute a PD-set of minimum cardinality. The decision version of the Min-PD problem remains NP-complete even when $G$ belongs to restricted graph classes such as bipartite graphs, chordal graphs etc. On the positive side, the problem is efficiently solvable for many graph classes including intervals graphs, strongly chordal graphs, permutation graphs etc. In this paper, we study the complexity of the problem in AT-free graphs and planar graph. The class of AT-free graphs contains cocomparability graphs, permutation graphs, trapezoid graphs, and interval graphs as subclasses. We propose a polynomial-time algorithm to compute a minimum PD-set in AT-free graphs. In addition, we also present a linear-time $2$-approximation algorithm for the problem in AT-free graphs. Further, we prove that the decision version of the problem is NP-complete for planar graphs, which answers an open question asked by Lin et al. (in Theor. Comput. Sci., $591 (2015): 99-105$ and Algorithmica, $ 82 (2020) :2809-2840$).
We consider Online Minimum Bipartite Matching under the uniform metric. We show that Randomized Greedy achieves a competitive ratio equal to $(1+1/n) (H_{n+1}-1)$, which matches the lower bound. Comparing with the fact that RG achieves an optimal ratio of $\Theta(\ln n)$ for the same problem but under the adversarial order, we find that the weaker arrival assumption of random order doesn't offer any extra algorithmic advantage for RG, or make the model strictly more tractable.
We propose a scalable Gromov-Wasserstein learning (S-GWL) method and establish a novel and theoretically-supported paradigm for large-scale graph analysis. The proposed method is based on the fact that Gromov-Wasserstein discrepancy is a pseudometric on graphs. Given two graphs, the optimal transport associated with their Gromov-Wasserstein discrepancy provides the correspondence between their nodes and achieves graph matching. When one of the graphs has isolated but self-connected nodes ($i.e.$, a disconnected graph), the optimal transport indicates the clustering structure of the other graph and achieves graph partitioning. Using this concept, we extend our method to multi-graph partitioning and matching by learning a Gromov-Wasserstein barycenter graph for multiple observed graphs; the barycenter graph plays the role of the disconnected graph, and since it is learned, so is the clustering. Our method combines a recursive $K$-partition mechanism with a regularized proximal gradient algorithm, whose time complexity is $\mathcal{O}(K(E+V)\log_K V)$ for graphs with $V$ nodes and $E$ edges. To our knowledge, our method is the first attempt to make Gromov-Wasserstein discrepancy applicable to large-scale graph analysis and unify graph partitioning and matching into the same framework. It outperforms state-of-the-art graph partitioning and matching methods, achieving a trade-off between accuracy and efficiency.