亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image recognition techniques heavily rely on abundant labeled data, particularly in medical contexts. Addressing the challenges associated with obtaining labeled data has led to the prominence of self-supervised learning and semi-supervised learning, especially in scenarios with limited annotated data. In this paper, we proposed an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition. Our methodology commences with pre-training on unlabeled data utilizing the BYOL method. Subsequently, we merge pseudo-labeled and labeled datasets to construct a neural network classifier, refining it through iterative fine-tuning. Experimental results on three different datasets demonstrate that our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Continual learning with deep neural networks presents challenges distinct from both the fixed-dataset and convex continual learning regimes. One such challenge is plasticity loss, wherein a neural network trained in an online fashion displays a degraded ability to fit new tasks. This problem has been extensively studied in both supervised learning and off-policy reinforcement learning (RL), where a number of remedies have been proposed. Still, plasticity loss has received less attention in the on-policy deep RL setting. Here we perform an extensive set of experiments examining plasticity loss and a variety of mitigation methods in on-policy deep RL. We demonstrate that plasticity loss is pervasive under domain shift in this regime, and that a number of methods developed to resolve it in other settings fail, sometimes even resulting in performance that is worse than performing no intervention at all. In contrast, we find that a class of ``regenerative'' methods are able to consistently mitigate plasticity loss in a variety of contexts, including in gridworld tasks and more challenging environments like Montezuma's Revenge and ProcGen.

The advancement of artificial intelligence (AI) for organ segmentation and tumor detection is propelled by the growing availability of computed tomography (CT) datasets with detailed, per-voxel annotations. However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and learning scheme. To overcome these limitations, we propose a universal, extensible framework enabling a single model, termed Universal Model, to deal with multiple public datasets and adapt to new classes (e.g., organs/tumors). Firstly, we introduce a novel language-driven parameter generator that leverages language embeddings from large language models, enriching semantic encoding compared with one-hot encoding. Secondly, the conventional output layers are replaced with lightweight, class-specific heads, allowing Universal Model to simultaneously segment 25 organs and six types of tumors and ease the addition of new classes. We train our Universal Model on 3,410 CT volumes assembled from 14 publicly available datasets and then test it on 6,173 CT volumes from four external datasets. Universal Model achieves first place on six CT tasks in the Medical Segmentation Decathlon (MSD) public leaderboard and leading performance on the Beyond The Cranial Vault (BTCV) dataset. In summary, Universal Model exhibits remarkable computational efficiency (6x faster than other dataset-specific models), demonstrates strong generalization across different hospitals, transfers well to numerous downstream tasks, and more importantly, facilitates the extensibility to new classes while alleviating the catastrophic forgetting of previously learned classes. Codes, models, and datasets are available at //github.com/ljwztc/CLIP-Driven-Universal-Model

Offline Licensing is a mechanism for compute governance that could be used to prevent unregulated training of potentially dangerous frontier AI models. The mechanism works by disabling AI chips unless they have an unused license from a regulator. In this report, we present a design for a minimal version of Offline Licensing that could be delivered via a firmware update. Existing AI chips could potentially support Offline Licensing within a year if they have the following (relatively common) hardware security features: firmware verification, firmware rollback protection, and secure non-volatile memory. Public documentation suggests that NVIDIA's H100 AI chip already has these security features. Without additional hardware modifications, the system is susceptible to physical hardware attacks. However, these attacks might require expensive equipment and could be difficult to reliably apply to thousands of AI chips. A firmware-based Offline Licensing design shares the same legal requirements and license approval mechanism as a hardware-based solution. Implementing a firmware-based solution now could accelerate the eventual deployment of a more secure hardware-based solution in the future. For AI chip manufacturers, implementing this security mechanism might allow chips to be sold to customers that would otherwise be prohibited by export restrictions. For governments, it may be important to be able to prevent unsafe or malicious actors from training frontier AI models in the next few years. Based on this initial analysis, firmware-based Offline Licensing could partially solve urgent security and trade problems and is technically feasible for AI chips that have common hardware security features.

Preferences are a pivotal component in practical reasoning, especially in tasks that involve decision-making over different options or courses of action that could be pursued. In this work, we focus on repairing and querying inconsistent knowledge bases in the form of graph databases, which involves finding a way to solve conflicts in the knowledge base and considering answers that are entailed from every possible repair, respectively. Without a priori domain knowledge, all possible repairs are equally preferred. Though that may be adequate for some settings, it seems reasonable to establish and exploit some form of preference order among the potential repairs. We study the problem of computing prioritized repairs over graph databases with data values, using a notion of consistency based on GXPath expressions as integrity constraints. We present several preference criteria based on the standard subset repair semantics, incorporating weights, multisets, and set-based priority levels. We show that it is possible to maintain the same computational complexity as in the case where no preference criterion is available for exploitation. Finally, we explore the complexity of consistent query answering in this setting and obtain tight lower and upper bounds for all the preference criteria introduced.

Simulation-based testing remains the main approach for validating Autonomous Driving Systems. We propose a rigorous test method based on breaking down scenarios into simple ones, taking into account the fact that autopilots make decisions according to traffic rules whose application depends on local knowledge and context. This leads us to consider the autopilot as a dynamic system receiving three different types of vistas as input, each characterizing a specific driving operation and a corresponding control policy. The test method for the considered vista types generates test cases for critical configurations that place the vehicle under test in critical situations characterized by the transition from cautious behavior to progression in order to clear an obstacle. The test cases thus generated are realistic, i.e., they determine the initial conditions from which safe control policies are possible, based on knowledge of the vehicle's dynamic characteristics. Constraint analysis identifies the most critical test cases, whose success implies the validity of less critical ones. Test coverage can therefore be greatly simplified. Critical test cases reveal major defects in Apollo, Autoware, and the Carla and LGSVL autopilots. Defects include accidents, software failures, and traffic rule violations that would be difficult to detect by random simulation, as the test cases lead to situations characterized by finely-tuned parameters of the vehicles involved, such as their relative position and speed. Our results corroborate real-life observations and confirm that autonomous driving systems still have a long way to go before offering acceptable safety guarantees.

New developments are enabling AI systems to perceive, recognize, and respond with social cues based on inferences made from humans' explicit or implicit behavioral and verbal cues. These AI systems, equipped with an equivalent of human's Theory of Mind (ToM) capability, are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners. They mark a new era in human-AI interaction (HAI) that diverges from traditional human-computer interaction (HCI), where computers are commonly seen as tools instead of social actors. Designing and understanding the human perceptions and experiences in this emerging HAI era becomes an urgent and critical issue for AI systems to fulfill human needs and mitigate risks across social contexts. In this paper, we posit the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research by highlighting the iterative and mutual shaping nature of human-AI communication. We discuss the motivation of the MToM framework and its three key components that iteratively shape the human-AI communication in three stages. We then describe two empirical studies inspired by the MToM framework to demonstrate the power of MToM in guiding the design and understanding of human-AI communication. Finally, we discuss future research opportunities in human-AI interaction through the lens of MToM.

Words of estimative probability (WEPs), such as ''maybe'' or ''probably not'' are ubiquitous in natural language for communicating estimative uncertainty, compared with direct statements involving numerical probability. Human estimative uncertainty, and its calibration with numerical estimates, has long been an area of study -- including by intelligence agencies like the CIA. This study compares estimative uncertainty in commonly used large language models (LLMs) like GPT-4 and ERNIE-4 to that of humans, and to each other. Here we show that LLMs like GPT-3.5 and GPT-4 align with human estimates for some, but not all, WEPs presented in English. Divergence is also observed when the LLM is presented with gendered roles and Chinese contexts. Further study shows that an advanced LLM like GPT-4 can consistently map between statistical and estimative uncertainty, but a significant performance gap remains. The results contribute to a growing body of research on human-LLM alignment.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司