We propose a fast and efficient strategy, called the representative approach, for big data analysis with generalized linear models, especially for distributed data with localization requirements or limited network bandwidth. With a given partition of massive dataset, this approach constructs a representative data point for each data block and fits the target model using the representative dataset. In terms of time complexity, it is as fast as the subsampling approaches in the literature. As for efficiency, its accuracy in estimating parameters given a homogeneous partition is comparable with the divide-and-conquer method. Supported by comprehensive simulation studies and theoretical justifications, we conclude that mean representatives (MR) work fine for linear models or generalized linear models with a flat inverse link function and moderate coefficients of continuous predictors. For general cases, we recommend the proposed score-matching representatives (SMR), which may improve the accuracy of estimators significantly by matching the score function values. As an illustrative application to the Airline on-time performance data, we show that the MR and SMR estimates are as good as the full data estimate when available.
We develop methodology for testing hypotheses regarding the slope function in functional linear regression for time series via a reproducing kernel Hilbert space approach. In contrast to most of the literature, which considers tests for the exact nullity of the slope function, we are interested in the null hypothesis that the slope function vanishes only approximately, where deviations are measured with respect to the $L^2$-norm. An asymptotically pivotal test is proposed, which does not require the estimation of nuisance parameters and long-run covariances. The key technical tools to prove the validity of our approach include a uniform Bahadur representation and a weak invariance principle for a sequential process of estimates of the slope function. Both scalar-on-function and function-on-function linear regression are considered and finite-sample methods for implementing our methodology are provided. We also illustrate the potential of our methods by means of a small simulation study and a data example.
We describe how to approximate the intractable marginal likelihood that arises when fitting generalized linear mixed models. We prove that non-adaptive quadrature approximations yield high error asymptotically in every statistical model satisfying weak regularity conditions. We derive the rate of error incurred when using adaptive quadrature to approximate the marginal likelihood in a broad class of generalized linear mixed models, which includes non-exponential family response and non-Gaussian random effects distributions. We provide an explicit recommendation for how many quadrature points to use, and show that this recommendation recovers and explains many empirical results from published simulation studies and data analyses. Particular attention is paid to models for dependent binary and survival/time-to-event observations. Code to reproduce results in the manuscript is found at //github.com/awstringer1/glmm-aq-paper-code.
In the context of principal components analysis (PCA), the bootstrap is commonly applied to solve a variety of inference problems, such as constructing confidence intervals for the eigenvalues of the population covariance matrix $\Sigma$. However, when the data are high-dimensional, there are relatively few theoretical guarantees that quantify the performance of the bootstrap. Our aim in this paper is to analyze how well the bootstrap can approximate the joint distribution of the leading eigenvalues of the sample covariance matrix $\hat\Sigma$, and we establish non-asymptotic rates of approximation with respect to the multivariate Kolmogorov metric. Under certain assumptions, we show that the bootstrap can achieve the dimension-free rate of ${\tt{r}}(\Sigma)/\sqrt n$ up to logarithmic factors, where ${\tt{r}}(\Sigma)$ is the effective rank of $\Sigma$, and $n$ is the sample size. From a methodological standpoint, our work also illustrates that applying a transformation to the eigenvalues of $\hat\Sigma$ before bootstrapping is an important consideration in high-dimensional settings.
We employ a toolset -- dubbed Dr. Frankenstein -- to analyse the similarity of representations in deep neural networks. With this toolset, we aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer. We demonstrate that the inner representations emerging in deep convolutional neural networks with the same architecture but different initializations can be matched with a surprisingly high degree of accuracy even with a single, affine stitching layer. We choose the stitching layer from several possible classes of linear transformations and investigate their performance and properties. The task of matching representations is closely related to notions of similarity. Using this toolset, we also provide a novel viewpoint on the current line of research regarding similarity indices of neural network representations: the perspective of the performance on a task.
Multi-label text classification refers to the problem of assigning each given document its most relevant labels from the label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution -- an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over state-of-the-art deep learning baselines.
Node classification is an important problem in graph data management. It is commonly solved by various label propagation methods that work iteratively starting from a few labeled seed nodes. For graphs with arbitrary compatibilities between classes, these methods crucially depend on knowing the compatibility matrix that must be provided by either domain experts or heuristics. Can we instead directly estimate the correct compatibilities from a sparsely labeled graph in a principled and scalable way? We answer this question affirmatively and suggest a method called distant compatibility estimation that works even on extremely sparsely labeled graphs (e.g., 1 in 10,000 nodes is labeled) in a fraction of the time it later takes to label the remaining nodes. Our approach first creates multiple factorized graph representations (with size independent of the graph) and then performs estimation on these smaller graph sketches. We define algebraic amplification as the more general idea of leveraging algebraic properties of an algorithm's update equations to amplify sparse signals. We show that our estimator is by orders of magnitude faster than an alternative approach and that the end-to-end classification accuracy is comparable to using gold standard compatibilities. This makes it a cheap preprocessing step for any existing label propagation method and removes the current dependence on heuristics.
For many computer vision applications such as image captioning, visual question answering, and person search, learning discriminative feature representations at both image and text level is an essential yet challenging problem. Its challenges originate from the large word variance in the text domain as well as the difficulty of accurately measuring the distance between the features of the two modalities. Most prior work focuses on the latter challenge, by introducing loss functions that help the network learn better feature representations but fail to account for the complexity of the textual input. With that in mind, we introduce TIMAM: a Text-Image Modality Adversarial Matching approach that learns modality-invariant feature representations using adversarial and cross-modal matching objectives. In addition, we demonstrate that BERT, a publicly-available language model that extracts word embeddings, can successfully be applied in the text-to-image matching domain. The proposed approach achieves state-of-the-art cross-modal matching performance on four widely-used publicly-available datasets resulting in absolute improvements ranging from 2% to 5% in terms of rank-1 accuracy.
Sentence representations can capture a wide range of information that cannot be captured by local features based on character or word N-grams. This paper examines the usefulness of universal sentence representations for evaluating the quality of machine translation. Although it is difficult to train sentence representations using small-scale translation datasets with manual evaluation, sentence representations trained from large-scale data in other tasks can improve the automatic evaluation of machine translation. Experimental results of the WMT-2016 dataset show that the proposed method achieves state-of-the-art performance with sentence representation features only.
Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that word co-occurrence statistics change continuously and therefore impose continuous stochastic process priors on their model parameters. These dynamical priors make inference much harder than in regular topic models, and also limit scalability. In this paper, we present several new results around DTMs. First, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs). This allows us to explore topics that develop smoothly over time, that have a long-term memory or are temporally concentrated (for event detection). Second, we show how to perform scalable approximate inference in these models based on ideas around stochastic variational inference and sparse Gaussian processes. This way we can train a rich family of DTMs to massive data. Our experiments on several large-scale datasets show that our generalized model allows us to find interesting patterns that were not accessible by previous approaches.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.