亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research aims to explore various methods for assessing user feedback in mixed-initiative conversational search (CS) systems. While CS systems enjoy profuse advancements across multiple aspects, recent research fails to successfully incorporate feedback from the users. One of the main reasons for that is the lack of system-user conversational interaction data. To this end, we propose a user simulator-based framework for multi-turn interactions with a variety of mixed-initiative CS systems. Specifically, we develop a user simulator, dubbed ConvSim, that, once initialized with an information need description, is capable of providing feedback to a system's responses, as well as answering potential clarifying questions. Our experiments on a wide variety of state-of-the-art passage retrieval and neural re-ranking models show that effective utilization of user feedback can lead to 16% retrieval performance increase in terms of nDCG@3. Moreover, we observe consistent improvements as the number of feedback rounds increases (35% relative improvement in terms of nDCG@3 after three rounds). This points to a research gap in the development of specific feedback processing modules and opens a potential for significant advancements in CS. To support further research in the topic, we release over 30,000 transcripts of system-simulator interactions based on well-established CS datasets.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 在線 · 賭博機/老虎機 · Processing(編程語言) · MoDELS ·
2023 年 6 月 12 日

We consider a general online resource allocation model with bandit feedback and time-varying demands. While online resource allocation has been well studied in the literature, most existing works make the strong assumption that the demand arrival process is stationary. In practical applications, such as online advertisement and revenue management, however, this process may be exogenous and non-stationary, like the constantly changing internet traffic. Motivated by the recent Online Algorithms with Advice framework [Mitazenmacher and Vassilvitskii, \emph{Commun. ACM} 2022], we explore how online advice can inform policy design. We establish an impossibility result that any algorithm perform poorly in terms of regret without any advice in our setting. In contrast, we design an robust online algorithm that leverages the online predictions on the total demand volumes. Empowered with online advice, our proposed algorithm is shown to have both theoretical performance and promising numerical results compared with other algorithms in literature. We also provide two explicit examples for the time-varying demand scenarios and derive corresponding theoretical performance guarantees. Finally, we adapt our model to a network revenue management problem, and numerically demonstrate that our algorithm can still performs competitively compared to existing baselines.

In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using general geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.

The increasing installation rate of wind power poses great challenges to the global power system. In order to ensure the reliable operation of the power system, it is necessary to accurately forecast the wind speed and power of the wind turbines. At present, deep learning is progressively applied to the wind speed prediction. Nevertheless, the recent deep learning methods still reflect the embarrassment for practical applications due to model interpretability and hardware limitation. To this end, a novel deep knowledge-based learning method is proposed in this paper. The proposed method hybridizes pre-training method and auto-encoder structure to improve data representation and modeling of the deep knowledge-based learning framework. In order to form knowledge and corresponding absorbers, the original data is preprocessed by an optimization model based on correlation to construct multi-layer networks (knowledge) which are absorbed by sequence to sequence (Seq2Seq) models. Specifically, new cognition and memory units (CMU) are designed to reinforce traditional deep learning framework. Finally, the effectiveness of the proposed method is verified by three wind prediction cases from a wind farm in Liaoning, China. Experimental results show that the proposed method increases the stability and training efficiency compared to the traditional LSTM method and LSTM/GRU-based Seq2Seq method for applications of wind speed forecasting.

Causal inference is one of the hallmarks of human intelligence. While the field of CausalNLP has attracted much interest in the recent years, existing causal inference datasets in NLP primarily rely on discovering causality from empirical knowledge (e.g., commonsense knowledge). In this work, we propose the first benchmark dataset to test the pure causal inference skills of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables. We curate a large-scale dataset of more than 400K samples, on which we evaluate seventeen existing LLMs. Through our experiments, we identify a key shortcoming of LLMs in terms of their causal inference skills, and show that these models achieve almost close to random performance on the task. This shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find that these models still fail to generalize -- they can only perform causal inference in in-distribution settings when variable names and textual expressions used in the queries are similar to those in the training set, but fail in out-of-distribution settings generated by perturbing these queries. Corr2Cause is a challenging task for LLMs, and would be helpful in guiding future research on improving LLMs' pure reasoning skills and generalizability. Our data is at //huggingface.co/datasets/causalnlp/corr2cause. Our code is at //github.com/causalNLP/corr2cause.

The theme for CUI 2023 is 'designing for inclusive conversation', but who are CUIs really designed for? The field has its roots in computer science, which has a long acknowledged diversity problem. Inspired by studies mapping out the diversity of the CHI and voice assistant literature, we set out to investigate how these issues have (or have not) shaped the CUI literature. To do this we reviewed the 46 full-length research papers that have been published at CUI since its inception in 2019. After detailing the eight papers that engage with accessibility, social interaction, and performance of gender, we show that 90% of papers published at CUI with user studies recruit participants from Europe and North America (or do not specify). To complement existing work in the community towards diversity we discuss the factors that have contributed to the current status quo, and offer some initial suggestions as to how we as a CUI community can continue to improve. We hope that this will form the beginning of a wider discussion at the conference.

The assessment of source code in university education is a central and important task for lecturers of programming courses. In doing so, educators are confronted with growing numbers of students having increasingly diverse prerequisites, a shortage of tutors, and highly dynamic learning objectives. To support lecturers in meeting these challenges, the use of automated programming assessment systems (APASs), facilitating formative assessments by providing timely, objective feedback, is a promising solution. Measuring the effectiveness and success of these platforms is crucial to understanding how such platforms should be designed, implemented, and used. However, research and practice lack a common understanding of aspects influencing the success of APASs. To address these issues, we have devised a success model for APASs based on established models from information systems as well as blended learning research and conducted an online survey with 414 students using the same APAS. In addition, we examined the role of mediators intervening between technology-, system- or self-related factors, respectively, and the users' satisfaction with APASs. Ultimately, our research has yielded a model of success comprising seven constructs influencing user satisfaction with an APAS.

Artificial lights commonly leave strong lens flare artifacts on the images captured at night, degrading both the visual quality and performance of vision algorithms. Existing flare removal approaches mainly focus on removing daytime flares and fail in nighttime cases. Nighttime flare removal is challenging due to the unique luminance and spectrum of artificial lights, as well as the diverse patterns and image degradation of the flares. The scarcity of the nighttime flare removal dataset constraints the research on this crucial task. In this paper, we introduce Flare7K++, the first comprehensive nighttime flare removal dataset, consisting of 962 real-captured flare images (Flare-R) and 7,000 synthetic flares (Flare7K). Compared to Flare7K, Flare7K++ is particularly effective in eliminating complicated degradation around the light source, which is intractable by using synthetic flares alone. Besides, the previous flare removal pipeline relies on the manual threshold and blur kernel settings to extract light sources, which may fail when the light sources are tiny or not overexposed. To address this issue, we additionally provide the annotations of light sources in Flare7K++ and propose a new end-to-end pipeline to preserve the light source while removing lens flares. Our dataset and pipeline offer a valuable foundation and benchmark for future investigations into nighttime flare removal studies. Extensive experiments demonstrate that Flare7K++ supplements the diversity of existing flare datasets and pushes the frontier of nighttime flare removal towards real-world scenarios.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

北京阿比特科技有限公司