亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As of today, robots exhibit impressive agility but also pose potential hazards to humans using/collaborating with them. Consequently, safety is considered the most paramount factor in human-robot interaction (HRI). This paper presents a multi-layered safety architecture, integrating both physical and cognitive aspects for effective HRI. We outline critical requirements for physical safety layers as service modules that can be arbitrarily queried. Further, we showcase an HRI scheme that addresses human factors and perceived safety as high-level constraints on a validated impact safety paradigm. The aim is to enable safety certification of human-friendly robots across various HRI scenarios.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 機器人 · Processing(編程語言) · 多樣性 · Performer ·
2023 年 11 月 1 日

Recent years have witnessed many successful trials in the robot learning field. For contact-rich robotic tasks, it is challenging to learn coordinated motor skills by reinforcement learning. Imitation learning solves this problem by using a mimic reward to encourage the robot to track a given reference trajectory. However, imitation learning is not so efficient and may constrain the learned motion. In this paper, we propose instruction learning, which is inspired by the human learning process and is highly efficient, flexible, and versatile for robot motion learning. Instead of using a reference signal in the reward, instruction learning applies a reference signal directly as a feedforward action, and it is combined with a feedback action learned by reinforcement learning to control the robot. Besides, we propose the action bounding technique and remove the mimic reward, which is shown to be crucial for efficient and flexible learning. We compare the performance of instruction learning with imitation learning, indicating that instruction learning can greatly speed up the training process and guarantee learning the desired motion correctly. The effectiveness of instruction learning is validated through a bunch of motion learning examples for a biped robot and a quadruped robot, where skills can be learned typically within several million steps. Besides, we also conduct sim-to-real transfer and online learning experiments on a real quadruped robot. Instruction learning has shown great merits and potential, making it a promising alternative for imitation learning.

Mobile autonomous robots have the potential to revolutionize manufacturing processes. However, employing large robot fleets in manufacturing requires addressing challenges including collision-free movement in a shared workspace, effective multi-robot collaboration to manipulate and transport large payloads, complex task allocation due to coupled manufacturing processes, and spatial planning for parallel assembly and transportation of nested subassemblies. We propose a full algorithmic stack for large-scale multi-robot assembly planning that addresses these challenges and can synthesize construction plans for complex assemblies with thousands of parts in a matter of minutes. Our approach takes in a CAD-like product specification and automatically plans a full-stack assembly procedure for a group of robots to manufacture the product. We propose an algorithmic stack that comprises: (i) an iterative radial layout optimization procedure to define a global staging layout for the manufacturing facility, (ii) a graph-repair mixed-integer program formulation and a modified greedy task allocation algorithm to optimally allocate robots and robot sub-teams to assembly and transport tasks, (iii) a geometric heuristic and a hill-climbing algorithm to plan collaborative carrying configurations of robot sub-teams, and (iv) a distributed control policy that enables robots to execute the assembly motion plan collision-free. We also present an open-source multi-robot manufacturing simulator implemented in Julia as a resource to the research community, to test our algorithms and to facilitate multi-robot manufacturing research more broadly. Our empirical results demonstrate the scalability and effectiveness of our approach by generating plans to manufacture a LEGO model of a Saturn V launch vehicle with 1845 parts, 306 subassemblies, and 250 robots in under three minutes on a standard laptop computer.

Human-robot walking with prosthetic legs and exoskeletons, especially over complex terrains such as stairs, remains a significant challenge. Egocentric vision has the unique potential to detect the walking environment prior to physical interactions, which can improve transitions to and from stairs. This motivated us to create the StairNet initiative to support the development of new deep learning models for visual sensing and recognition of stairs, with an emphasis on lightweight and efficient neural networks for onboard real-time inference. In this study, we present an overview of the development of our large-scale dataset with over 515,000 manually labeled images, as well as our development of different deep learning models (e.g., 2D and 3D CNN, hybrid CNN and LSTM, and ViT networks) and training methods (e.g., supervised learning with temporal data and semi-supervised learning with unlabeled images) using our new dataset. We consistently achieved high classification accuracy (i.e., up to 98.8%) with different designs, offering trade-offs between model accuracy and size. When deployed on mobile devices with GPU and NPU accelerators, our deep learning models achieved inference speeds up to 2.8 ms. We also deployed our models on custom-designed CPU-powered smart glasses. However, limitations in the embedded hardware yielded slower inference speeds of 1.5 seconds, presenting a trade-off between human-centered design and performance. Overall, we showed that StairNet can be an effective platform to develop and study new visual perception systems for human-robot locomotion with applications in exoskeleton and prosthetic leg control.

Offloading is a popular way to overcome the resource and power constraints of networked embedded devices, which are increasingly found in industrial environments. It involves moving resource-intensive computational tasks to a more powerful device on the network, often in close proximity to enable wireless communication. However, many Industrial Internet of Things (IIoT) applications have real-time constraints. Offloading such tasks over a wireless network with latency uncertainties poses new challenges. In this paper, we aim to better understand these challenges by proposing a system architecture and scheduler for real-time task offloading in wireless IIoT environments. Based on a prototype, we then evaluate different system configurations and discuss their trade-offs and implications. Our design showed to prevent deadline misses under high load and network uncertainties and was able to outperform a reference scheduler in terms of successful task throughput. Under heavy task load, where the reference scheduler had a success rate of 5%, our design achieved a success rate of 60%.

The research on Reconfigurable Intelligent Surfaces (RISs) has dominantly been focused on physical-layer aspects and analyses of the achievable adaptation of the wireless propagation environment. Compared to that, questions related to system-level integration of RISs have received less attention. We address this research gap by analyzing the necessary control/signaling operations that are necessary to integrate RIS as a new type of wireless infrastructure element. We build a general model for evaluating the impact of control operations along two dimensions: i) the allocated bandwidth of the control channels (in-band and out-of-band), and ii) the rate selection for the data channel (multiplexing or diversity). Specifically, the second dimension results in two generic transmission schemes, one based on channel estimation and the subsequent optimization of the RIS, while the other is based on sweeping through predefined RIS phase configurations. We analyze the communication performance in multiple setups built along these two dimensions. While necessarily simplified, our analysis reveals the basic trade-offs in RIS-assisted communication and the associated control operations. The main contribution of the paper is a methodology for systematic evaluation of the control overhead in RIS-aided networks, regardless of the specific control schemes used.

Multi-robot Motion Planning (MRMP) is an active research field which has gained attention over the years. MRMP has significant roles to improve the efficiency and reliability of multi-robot system in a wide range of applications from delivery robots to collaborative assembly lines. This survey provides an overview of MRMP taxonomy, state-of-the-art algorithms, and approaches which have been developed for multi-robot systems. This study also discusses the strengths and limitations of each algorithm and their applications in various scenarios. Moreover, based on this, we can draw out open problems for future research.

Floods can cause horrific harm to life and property. However, they can be mitigated or even avoided by the effective use of hydraulic structures such as dams, gates, and pumps. By pre-releasing water via these structures in advance of extreme weather events, water levels are sufficiently lowered to prevent floods. In this work, we propose FIDLAR, a Forecast Informed Deep Learning Architecture, achieving flood management in watersheds with hydraulic structures in an optimal manner by balancing out flood mitigation and unnecessary wastage of water via pre-releases. We perform experiments with FIDLAR using data from the South Florida Water Management District, which manages a coastal area that is highly prone to frequent storms and floods. Results show that FIDLAR performs better than the current state-of-the-art with several orders of magnitude speedup and with provably better pre-release schedules. The dramatic speedups make it possible for FIDLAR to be used for real-time flood management. The main contribution of this paper is the effective use of tools for model explainability, allowing us to understand the contribution of the various environmental factors towards its decisions.

An important prerequisite for autonomous robots is their ability to reliably grasp a wide variety of objects. Most state-of-the-art systems employ specialized or simple end-effectors, such as two-jaw grippers, which severely limit the range of objects to manipulate. Additionally, they conventionally require a structured and fully predictable environment while the vast majority of our world is complex, unstructured, and dynamic. This paper presents an implementation to overcome both issues. Firstly, the integration of a five-finger hand enhances the variety of possible grasps and manipulable objects. This kinematically complex end-effector is controlled by a deep learning based generative grasping network. The required virtual model of the unknown target object is iteratively completed by processing visual sensor data. Secondly, this visual feedback is employed to realize closed-loop servo control which compensates for external disturbances. Our experiments on real hardware confirm the system's capability to reliably grasp unknown dynamic target objects without a priori knowledge of their trajectories. To the best of our knowledge, this is the first method to achieve dynamic multi-fingered grasping for unknown objects. A video of the experiments is available at //youtu.be/Ut28yM1gnvI.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司