亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Android app developers extensively employ code reuse, integrating many third-party libraries into their apps. While such integration is practical for developers, it can be challenging for static analyzers to achieve scalability and precision when such libraries can account for a large part of the app code. As a direct consequence, when a static analysis is performed, it is common practice in the literature to only consider developer code --with the assumption that the sought issues are in developer code rather than in the libraries. However, analysts need to precisely distinguish between library code and developer code in Android apps to ensure the effectiveness of static analysis. Currently, many static analysis approaches rely on white lists of libraries. However, these white lists are unreliable, as they are inaccurate and largely non-comprehensive. In this paper, we propose a new approach to address the lack of comprehensive and automated solutions for the production of accurate and "always up to date" sets of third-party libraries. First, we demonstrate the continued need for a white list of third-party libraries. Second, we propose an automated approach to produce an accurate and up-to-date set of third-party libraries in the form of a dataset called AndroLibZoo. Our dataset, which we make available to the research community, contains to date 20 162 libraries and is meant to evolve. Third, we illustrate the significance of using AndroLibZoo to filter libraries in recent apps. Fourth, we demonstrate that AndroLibZoo is more suitable than the current state-of-the-art list for improved static analysis. Finally, we show how the use of AndroLibZoo can enhance the performance of existing Android app static analyzers.

相關內容

Artificial intelligence models and methods commonly lack causal interpretability. Despite the advancements in interpretable machine learning (IML) methods, they frequently assign importance to features which lack causal influence on the outcome variable. Selecting causally relevant features among those identified as relevant by these methods, or even before model training, would offer a solution. Feature selection methods utilizing information theoretical quantities have been successful in identifying statistically relevant features. However, the information theoretical quantities they are based on do not incorporate causality, rendering them unsuitable for such scenarios. To address this challenge, this article proposes information theoretical quantities that incorporate the causal structure of the system, which can be used to evaluate causal importance of features for some given outcome variable. Specifically, we introduce causal versions of entropy and mutual information, termed causal entropy and causal information gain, which are designed to assess how much control a feature provides over the outcome variable. These newly defined quantities capture changes in the entropy of a variable resulting from interventions on other variables. Fundamental results connecting these quantities to the existence of causal effects are derived. The use of causal information gain in feature selection is demonstrated, highlighting its superiority over standard mutual information in revealing which features provide control over a chosen outcome variable. Our investigation paves the way for the development of methods with improved interpretability in domains involving causation.

Our focus is on robust recovery algorithms in statistical linear inverse problem. We consider two recovery routines - the much studied linear estimate originating from Kuks and Olman [42] and polyhedral estimate introduced in [37]. It was shown in [38] that risk of these estimates can be tightly upper-bounded for a wide range of a priori information about the model through solving a convex optimization problem, leading to a computationally efficient implementation of nearly optimal estimates of these types. The subject of the present paper is design and analysis of linear and polyhedral estimates which are robust with respect to the uncertainty in the observation matrix. We evaluate performance of robust estimates under stochastic and deterministic matrix uncertainty and show how the estimation risk can be bounded by the optimal value of efficiently solvable convex optimization problem; "presumably good" estimates of both types are then obtained through optimization of the risk bounds with respect to estimate parameters.

The introduction and advancements in Local Differential Privacy (LDP) variants have become a cornerstone in addressing the privacy concerns associated with the vast data produced by smart devices, which forms the foundation for data-driven decision-making in crowdsensing. While harnessing the power of these immense data sets can offer valuable insights, it simultaneously poses significant privacy risks for the users involved. LDP, a distinguished privacy model with a decentralized architecture, stands out for its capability to offer robust privacy assurances for individual users during data collection and analysis. The essence of LDP is its method of locally perturbing each user's data on the client-side before transmission to the server-side, safeguarding against potential privacy breaches at both ends. This article offers an in-depth exploration of LDP, emphasizing its models, its myriad variants, and the foundational structure of LDP algorithms.

We explore the novel application of Large Language Models to code optimization. We present a 7B-parameter transformer model trained from scratch to optimize LLVM assembly for code size. The model takes as input unoptimized assembly and outputs a list of compiler options to best optimize the program. Crucially, during training, we ask the model to predict the instruction counts before and after optimization, and the optimized code itself. These auxiliary learning tasks significantly improve the optimization performance of the model and improve the model's depth of understanding. We evaluate on a large suite of test programs. Our approach achieves a 3.0% improvement in reducing instruction counts over the compiler, outperforming two state-of-the-art baselines that require thousands of compilations. Furthermore, the model shows surprisingly strong code reasoning abilities, generating compilable code 91% of the time and perfectly emulating the output of the compiler 70% of the time.

This paper presents a novel unifying framework of bilinear LSTMs that can represent and utilize the nonlinear interaction of the input features present in sequence datasets for achieving superior performance over a linear LSTM and yet not incur more parameters to be learned. To realize this, our unifying framework allows the expressivity of the linear vs. bilinear terms to be balanced by correspondingly trading off between the hidden state vector size vs. approximation quality of the weight matrix in the bilinear term so as to optimize the performance of our bilinear LSTM, while not incurring more parameters to be learned. We empirically evaluate the performance of our bilinear LSTM in several language-based sequence learning tasks to demonstrate its general applicability.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司