The time-fractional porous medium equation is an important model of many hydrological, physical, and chemical flows. We study its self-similar solutions, which make up the profiles of many important experimentally measured situations. We prove that there is a unique solution to the general initial-boundary value problem in the one-dimensional setting. When supplemented with boundary conditions from the physical models, the problem exhibits a self-similar solution described with the use of the Erd\'elyi-Kober fractional operator. Using a backward shooting method, we show that there exists a unique solution to our problem. The shooting method is not only useful in deriving the theoretical results. We utilize it to devise an efficient numerical scheme to solve the governing problem along with two ways of discretizing the Erd\'elyi-Kober fractional derivative. Since the latter is a nonlocal operator, its numerical realization has to include some truncation. We find the correct truncation regime and prove several error estimates. Furthermore, the backward shooting method can be used to solve the main problem, and we provide a convergence proof. The main difficulty lies in the degeneracy of the diffusivity. We overcome it with some regularization. Our findings are supplemented with numerical simulations that verify the theoretical findings.
We consider evolutionary systems, i.e. systems of linear partial differential equations arising from the mathematical physics. For these systems there exists a general solution theory in exponentially weighted spaces which can be exploited in the analysis of numerical methods. The numerical method considered in this paper is a discontinuous Galerkin method in time combined with a conforming Galerkin method in space. Building on our recent paper, we improve some of the results, study the dependence of the numerical solution on the weight-parameter, consider a reformulation and post-processing of its numerical solution. As a by-product we provide error estimates for the dG-C0 method. Numerical simulations support the theoretical findings.
Obtaining guarantees on the convergence of the minimizers of empirical risks to the ones of the true risk is a fundamental matter in statistical learning. Instead of deriving guarantees on the usual estimation error, the goal of this paper is to provide concentration inequalities on the distance between the sets of minimizers of the risks for a broad spectrum of estimation problems. In particular, the risks are defined on metric spaces through probability measures that are also supported on metric spaces. A particular attention will therefore be given to include unbounded spaces and non-convex cost functions that might also be unbounded. This work identifies a set of assumptions allowing to describe a regime that seem to govern the concentration in many estimation problems, where the empirical minimizers are stable. This stability can then be leveraged to prove parametric concentration rates in probability and in expectation. The assumptions are verified, and the bounds showcased, on a selection of estimation problems such as barycenters on metric space with positive or negative curvature, subspaces of covariance matrices, regression problems and entropic-Wasserstein barycenters.
In this work, we establish the Freidlin--Wentzell large deviations principle (LDP) of the stochastic Cahn--Hilliard equation with small noise, which implies the one-point LDP. Further, we give the one-point LDP of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation. Our main result is the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the $\Gamma$-convergence of objective functions, which relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-side Lipschitz, we use the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. This plays an important role in deriving the $\Gamma$-convergence of objective functions.
The existence and consistency of a maximum likelihood estimator for the joint probability distribution of random parameters in discrete-time abstract parabolic systems are established by taking a nonparametric approach in the context of a mixed effects statistical model using a Prohorov metric framework on a set of feasible measures. A theoretical convergence result for a finite dimensional approximation scheme for computing the maximum likelihood estimator is also established and the efficacy of the approach is demonstrated by applying the scheme to the transdermal transport of alcohol modeled by a random parabolic PDE. Numerical studies included show that the maximum likelihood estimator is statistically consistent in that the convergence of the estimated distribution to the "true" distribution is observed in an example involving simulated data. The algorithm developed is then applied to two datasets collected using two different transdermal alcohol biosensors. Using the leave-one-out cross-validation method, we get an estimate for the distribution of the random parameters based on a training set. The input from a test drinking episode is then used to quantify the uncertainty propagated from the random parameters to the output of the model in the form of a 95% error band surrounding the estimated output signal.
We consider a Prohorov metric-based nonparametric approach to estimating the probability distribution of a random parameter vector in discrete-time abstract parabolic systems. We establish the existence and consistency of a least squares estimator. We develop a finite-dimensional approximation and convergence theory, and obtain numerical results by applying the nonparametric estimation approach and the finite-dimensional approximation framework to a problem involving an alcohol biosensor, wherein we estimate the probability distribution of random parameters in a parabolic PDE. To show the convergence of the estimated distribution to the "true" distribution, we simulate data from the "true" distribution, apply our algorithm, and obtain the estimated cumulative distribution function. We then use the Markov Chain Monte Carlo Metropolis Algorithm to generate random samples from the estimated distribution, and perform a generalized (2-dimensional) two-sample Kolmogorov-Smirnov test with null hypothesis that our generated random samples from the estimated distribution and generated random samples from the "true" distribution are drawn from the same distribution. We then apply our algorithm to actual human subject data from the alcohol biosensor and observe the behavior of the normalized root-mean-square error (NRMSE) using leave-one-out cross-validation (LOOCV) under different model complexities.
In studies of recurrent events, joint modeling approaches are often needed to allow for potential dependent censoring by a terminal event such as death. Joint frailty models for recurrent events and death with an additional dependence parameter have been studied for cases in which individuals are observed from the start of the event processes. However, the samples are often selected at a later time, which results in delayed entry. Thus, only individuals who have not yet experienced the terminal event will be included in the study. We propose a method for estimating the joint frailty model from such left-truncated data. The frailty distribution among the selected survivors differs from the frailty distribution in the underlying population if the recurrence process and the terminal event are associated. The correctly adjusted marginal likelihood can be expressed as a ratio of two integrals over the frailty distribution, which may be approximated using Gaussian quadrature. The baseline rates are specified as piecewise constant functions, and the covariates are assumed to have multiplicative effects on the event rates. We assess the performance of the estimation procedure in a simulation study, and apply the method to estimate age-specific rates of recurrent urinary tract infections and mortality in an older population.
In this article, we derive fast and robust parallel-in-time preconditioned iterative methods for the all-at-once linear systems arising upon discretization of time-dependent PDEs. The discretization we employ is based on a Runge--Kutta method in time, for which the development of parallel solvers is an emerging research area in the literature of numerical methods for time-dependent PDEs. By making use of classical theory of block matrices, one is able to derive a preconditioner for the systems considered. The block structure of the preconditioner allows for parallelism in the time variable, as long as one is able to provide an optimal solver for the system of the stages of the method. We thus propose a preconditioner for the latter system based on a singular value decomposition (SVD) of the (real) Runge--Kutta matrix $A_{\mathrm{RK}} = U \Sigma V^\top$. Supposing $A_{\mathrm{RK}}$ is invertible, we prove that the spectrum of the system for the stages preconditioned by our SVD-based preconditioner is contained within the right-half of the unit circle, under suitable assumptions on the matrix $U^\top V$ (the assumptions are well posed due to the polar decomposition of $A_{\mathrm{RK}}$). We show the numerical efficiency of our SVD-based preconditioner by solving the system of the stages arising from the discretization of the heat equation and the Stokes equations, with sequential time-stepping. Finally, we provide numerical results of the all-at-once approach for both problems, showing the speed-up achieved on a parallel architecture.
We present two (a decoupled and a coupled) integral-equation-based methods for the Morse-Ingard equations subject to Neumann boundary conditions on the exterior domain. Both methods are based on second-kind integral equation (SKIE) formulations. The coupled method is well-conditioned and can achieve high accuracy. The decoupled method has lower computational cost and more flexibility in dealing with the boundary layer; however, it is prone to the ill-conditioning of the decoupling transform and cannot achieve as high accuracy as the coupled method. We show numerical examples using a Nystr\"om method based on quadrature-by-expansion (QBX) with fast-multipole acceleration. We demonstrate the accuracy and efficiency of the solvers in both two and three dimensions with complex geometry.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.