亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Infrared imaging systems have a vast array of potential applications in pedestrian detection and autonomous driving, and their safety performance is of great concern. However, few studies have explored the safety of infrared imaging systems in real-world settings. Previous research has used physical perturbations such as small bulbs and thermal "QR codes" to attack infrared imaging detectors, but such methods are highly visible and lack stealthiness. Other researchers have used hot and cold blocks to deceive infrared imaging detectors, but this method is limited in its ability to execute attacks from various angles. To address these shortcomings, we propose a novel physical attack called adversarial infrared blocks (AdvIB). By optimizing the physical parameters of the adversarial infrared blocks, this method can execute a stealthy black-box attack on thermal imaging system from various angles. We evaluate the proposed method based on its effectiveness, stealthiness, and robustness. Our physical tests show that the proposed method achieves a success rate of over 80% under most distance and angle conditions, validating its effectiveness. For stealthiness, our method involves attaching the adversarial infrared block to the inside of clothing, enhancing its stealthiness. Additionally, we test the proposed method on advanced detectors, and experimental results demonstrate an average attack success rate of 51.2%, proving its robustness. Overall, our proposed AdvIB method offers a promising avenue for conducting stealthy, effective and robust black-box attacks on thermal imaging system, with potential implications for real-world safety and security applications.

相關內容

在科學,計算和工程學中,黑盒是一種設備,系統或對象,可以根據其輸入和輸出(或傳輸特性)對其進行查看,而無需對其內部工作有任何了解。 它的實現是“不透明的”(黑色)。 幾乎任何事物都可以被稱為黑盒:晶體管,引擎,算法,人腦,機構或政府。為了使用典型的“黑匣子方法”來分析建模為開放系統的事物,僅考慮刺激/響應的行為,以推斷(未知)盒子。 該黑匣子系統的通常表示形式是在該方框中居中的數據流程圖。黑盒的對立面是一個內部組件或邏輯可用于檢查的系統,通常將其稱為白盒(有時也稱為“透明盒”或“玻璃盒”)。

Infrared imaging systems have a vast array of potential applications in pedestrian detection and autonomous driving, and their safety performance is of great concern. However, few studies have explored the safety of infrared imaging systems in real-world settings. Previous research has used physical perturbations such as small bulbs and thermal "QR codes" to attack infrared imaging detectors, but such methods are highly visible and lack stealthiness. Other researchers have used hot and cold blocks to deceive infrared imaging detectors, but this method is limited in its ability to execute attacks from various angles. To address these shortcomings, we propose a novel physical attack called adversarial infrared blocks (AdvIB). By optimizing the physical parameters of the adversarial infrared blocks, this method can execute a stealthy black-box attack on thermal imaging system from various angles. We evaluate the proposed method based on its effectiveness, stealthiness, and robustness. Our physical tests show that the proposed method achieves a success rate of over 80% under most distance and angle conditions, validating its effectiveness. For stealthiness, our method involves attaching the adversarial infrared block to the inside of clothing, enhancing its stealthiness. Additionally, we test the proposed method on advanced detectors, and experimental results demonstrate an average attack success rate of 51.2%, proving its robustness. Overall, our proposed AdvIB method offers a promising avenue for conducting stealthy, effective and robust black-box attacks on thermal imaging system, with potential implications for real-world safety and security applications.

Single-frame infrared small target detection is considered to be a challenging task, due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small targets, and small target information is easy to lose in the high-level semantic layer. In this paper, we propose an enhancing feature learning network (EFLNet) based on YOLOv7 framework to solve these problems. First, we notice that there is an extremely imbalance between the target and the background in the infrared image, which makes the model pay more attention to the background features, resulting in missed detection. To address this problem, we propose a new adaptive threshold focal loss function that adjusts the loss weight automatically, compelling the model to allocate greater attention to target features. Second, we introduce the normalized Gaussian Wasserstein distance to alleviate the difficulty of model convergence caused by the extreme sensitivity of the bounding box regression to infrared small targets. Finally, we incorporate a dynamic head mechanism into the network to enable adaptive learning of the relative importance of each semantic layer. Experimental results demonstrate our method can achieve better performance in the detection performance of infrared small targets compared to state-of-the-art deep-learning based methods.

Physical adversarial attacks have put a severe threat to DNN-based object detectors. To enhance security, a combination of visible and infrared sensors is deployed in various scenarios, which has proven effective in disabling existing single-modal physical attacks. To further demonstrate the potential risks in such cases, we design a unified adversarial patch that can perform cross-modal physical attacks, achieving evasion in both modalities simultaneously with a single patch. Given the different imaging mechanisms of visible and infrared sensors, our work manipulates patches' shape features, which can be captured in different modalities when they undergo changes. To deal with challenges, we propose a novel boundary-limited shape optimization approach that aims to achieve compact and smooth shapes for the adversarial patch, making it easy to implement in the physical world. And a score-aware iterative evaluation method is also introduced to balance the fooling degree between visible and infrared detectors during optimization, which guides the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. Furthermore, we propose an Affine-Transformation-based enhancement strategy that makes the learnable shape robust to various angles, thus mitigating the issue of shape deformation caused by different shooting angles in the real world. Our method is evaluated against several state-of-the-art object detectors, achieving an Attack Success Rate (ASR) of over 80%. We also demonstrate the effectiveness of our approach in physical-world scenarios under various settings, including different angles, distances, postures, and scenes for both visible and infrared sensors.

Bayesian state and parameter estimation have been automated effectively in a variety of probabilistic programming languages. The process of model comparison on the other hand, which still requires error-prone and time-consuming manual derivations, is often overlooked despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes.

Localization in high-level Autonomous Driving (AD) systems is highly security critical. While the popular Multi-Sensor Fusion (MSF) based design can be more robust against single-source sensor spoofing attacks, it is found recently that state-of-the-art MSF algorithms is vulnerable to GPS spoofing alone due to practical factors, which can cause various road hazards such as driving off road or onto the wrong way. In this work, we perform the first systematic exploration of the novel usage of lane detection (LD) to defend against such attacks. We first systematically analyze the potentials of such a domain-specific defense opportunity, and then design a novel LD-based defense approach, $LD^3$, that aims at not only detecting such attacks effectively in the real time, but also safely stopping the victim in the ego lane upon detection considering the absence of onboard human drivers. We evaluate $LD^3$ on real-world sensor traces and find that it can achieve effective and timely detection against existing attack with 100% true positive rates and 0% false positive rates. Results also show that $LD^3$ is robust to diverse environmental conditions and is effective at steering the AD vehicle to safely stop within the current traffic lane. We implement $LD^3$ on two open-source high-level AD systems, Baidu Apollo and Autoware, and validate its defense capability in both simulation and the physical world in end-to-end driving. We further conduct adaptive attack evaluations and find that $LD^3$ is effective at bounding the deviations from reaching the attack goals in stealthy attacks and is robust to latest LD-side attack.

This paper provides a comprehensive review of past and current advances in the early detection of bark beetle-induced tree mortality from three primary perspectives: bark beetle & host interactions, RS, and ML/DL. In contrast to prior efforts, this review encompasses all RS systems and emphasizes ML/DL methods to investigate their strengths and weaknesses. We parse existing literature based on multi- or hyper-spectral analyses and distill their knowledge based on: bark beetle species & attack phases with a primary emphasis on early stages of attacks, host trees, study regions, RS platforms & sensors, spectral/spatial/temporal resolutions, spectral signatures, spectral vegetation indices (SVIs), ML approaches, learning schemes, task categories, models, algorithms, classes/clusters, features, and DL networks & architectures. Although DL-based methods and the random forest (RF) algorithm showed promising results, highlighting their potential to detect subtle changes across visible, thermal, and short-wave infrared (SWIR) spectral regions, they still have limited effectiveness and high uncertainties. To inspire novel solutions to these shortcomings, we delve into the principal challenges & opportunities from different perspectives, enabling a deeper understanding of the current state of research and guiding future research directions.

The utilization of finite field multipliers is pervasive in contemporary digital systems, with hardware implementation for bit parallel operation often necessitating millions of logic gates. However, various digital design issues, whether inherent or stemming from soft errors, can result in gate malfunction, ultimately can cause gates to malfunction, which in turn results in incorrect multiplier outputs. Thus, to prevent susceptibility to error, it is imperative to employ a reliable finite field multiplier implementation that boasts a robust fault detection capability. In order to achieve the best fault detection performance for finite field detection performance for finite field multipliers while maintaining a low-complexity implementation, this study proposes a novel fault detection scheme for a recent bit-parallel polynomial basis over GF(2m). The primary concept behind the proposed approach is centered on the implementation of an efficient BCH decoder that utilize Berlekamp-Rumsey-Solomon (BRS) algorithm and Chien-search method to effectively locate errors with minimal delay. The results of our synthesis indicate that our proposed error detection and correction architecture for a 45-bit multiplier with 5-bit errors achieves a 37% and 49% reduction in critical path delay compared to existing designs. Furthermore, a 45-bit multiplicand with five errors has hardware complexity that is only 80%, which is significantly less complex than the most advanced BCH-based fault recognition techniques, such as TMR, Hamming's single error correction, and LDPC-based methods for finite field multiplication which is desirable in constrained applications, such as smart cards, IoT devices, and implantable medical devices.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司