亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventional Feedback-Linearization-based controller, applied to the tilt-rotor (eight inputs), results in the extensive changes in the tilting angles, which are not expected in practice. To solve this problem, we introduce the novel concept UAV gait to restrict the tilting angles. The gait plan was initially to solve the control problems for quadruped (four-legged) robots. Transplanting this approach, accompanied by feedback linearization, to the tiltrotor may cause the well-known non-invertible problem in the decoupling matrix. In this research, we explore the invertible gait for the tiltrotor and apply feedback linearization to stabilize the attitude and the altitude. The equivalent conditions to achieve a full-rank decoupling matrix are deduced and simplified to a near zero roll and zero pitch. This paper proposed several invertible gaits to conduct the attitude-altitude control test. The accepted gaits within the region of interest are visualized. The experiment is simulated in Simulink, MATLAB. The results show the promising response in attitude and altitude.

相關內容

Community detection refers to the problem of clustering the nodes of a network into groups. Existing inferential methods for community structure mainly focus on unweighted (binary) networks. Many real-world networks are nonetheless weighted and a common practice is to dichotomize a weighted network to an unweighted one which is known to result in information loss. Literature on hypothesis testing in the latter situation is still missing. In this paper, we study the problem of testing the existence of community structure in weighted networks. Our contributions are threefold: (a). We use the (possibly infinite-dimensional) exponential family to model the weights and derive the sharp information-theoretic limit for the existence of consistent test. Within the limit, any test is inconsistent; and beyond the limit, we propose a useful consistent test. (b). Based on the information-theoretic limits, we provide the first formal way to quantify the loss of information incurred by dichotomizing weighted graphs into unweighted graphs in the context of hypothesis testing. (c). We propose several new and practically useful test statistics. Simulation study show that the proposed tests have good performance. Finally, we apply the proposed tests to an animal social network.

We apply a reinforcement meta-learning framework to optimize an integrated and adaptive guidance and flight control system for an air-to-air missile. The system is implemented as a policy that maps navigation system outputs directly to commanded rates of change for the missile's control surface deflections. The system induces intercept trajectories against a maneuvering target that satisfy control constraints on fin deflection angles, and path constraints on look angle and load. We test the optimized system in a six degrees-of-freedom simulator that includes a non-linear radome model and a strapdown seeker model, and demonstrate that the system adapts to both a large flight envelope and off-nominal flight conditions including perturbation of aerodynamic coefficient parameters and center of pressure locations, and flexible body dynamics. Moreover, we find that the system is robust to the parasitic attitude loop induced by radome refraction and imperfect seeker stabilization. We compare our system's performance to a longitudinal model of proportional navigation coupled with a three loop autopilot, and find that our system outperforms this benchmark by a large margin. Additional experiments investigate the impact of removing the recurrent layer from the policy and value function networks, performance with an infrared seeker, and flexible body dynamics.

Momentum methods, including heavy-ball~(HB) and Nesterov's accelerated gradient~(NAG), are widely used in training neural networks for their fast convergence. However, there is a lack of theoretical guarantees for their convergence and acceleration since the optimization landscape of the neural network is non-convex. Nowadays, some works make progress towards understanding the convergence of momentum methods in an over-parameterized regime, where the number of the parameters exceeds that of the training instances. Nonetheless, current results mainly focus on the two-layer neural network, which are far from explaining the remarkable success of the momentum methods in training deep neural networks. Motivated by this, we investigate the convergence of NAG with constant learning rate and momentum parameter in training two architectures of deep linear networks: deep fully-connected linear neural networks and deep linear ResNets. Based on the over-parameterization regime, we first analyze the residual dynamics induced by the training trajectory of NAG for a deep fully-connected linear neural network under the random Gaussian initialization. Our results show that NAG can converge to the global minimum at a $(1 - \mathcal{O}(1/\sqrt{\kappa}))^t$ rate, where $t$ is the iteration number and $\kappa > 1$ is a constant depending on the condition number of the feature matrix. Compared to the $(1 - \mathcal{O}(1/{\kappa}))^t$ rate of GD, NAG achieves an acceleration over GD. To the best of our knowledge, this is the first theoretical guarantee for the convergence of NAG to the global minimum in training deep neural networks. Furthermore, we extend our analysis to deep linear ResNets and derive a similar convergence result.

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.

Model predictive control (MPC) has been used widely in power electronics due to its simple concept, fast dynamic response, and good reference tracking. However, it suffers from parametric uncertainties, since it directly relies on the mathematical model of the system to predict the optimal switching states to be used at the next sampling time. As a result, uncertain parameters lead to an ill-designed MPC. Thus, this paper offers a model-free control strategy on the basis of artificial neural networks (ANNs), for mitigating the effects of parameter mismatching while having a little negative impact on the inverter's performance. This method includes two related stages. First, MPC is used as an expert to control the studied converter in order to provide a dataset, while, in the second stage, the obtained dataset is utilized to train the proposed ANN. The case study herein is based on a four-level three-cell flying capacitor inverter. In this study, MATLAB/Simulink is used to simulate the performance of the proposed method, taking into account various operating conditions. Afterward, the simulation results are reported in comparison with the conventional MPC scheme, demonstrating the superior performance of the proposed control strategy in terms of robustness against parameters mismatch and low total harmonic distortion (THD), especially when changes occur in the system parameters, compared to the conventional MPC. Furthermore, the experimental validation of the proposed method is provided based on the Hardware-in-the-Loop (HIL) simulation using the C2000TM-microcontrollerLaunchPadXL TMS320F28379D kit, demonstrating the applicability of the ANN-based control strategy to be implemented on a DSP controller.

We consider the classic motion planning problem defined over a roadmap in which a vehicle seeks to find an optimal path from a source to a destination in presence of an attacker who can launch attacks on the vehicle over any edge of the roadmap. The vehicle (defender) has the capability to switch on/off a countermeasure that can detect and permanently disable the attack if it occurs concurrently. We model the problem of traveling along en edge using the framework of a simultaneous zero-sum dynamic game (edge-game) with a stopping state played between an attacker and defender. We characterize the Nash equiliria of an edge-game and provide closed form expressions for two actions per player. We further provide an analytic and approximate expression on the value of an edge-game and characterize conditions under which it grows sub-linearly with the number of stages. We study the sensitivity of Nash equilibrium to the (i) cost of using the countermeasure, (ii) cost of motion and (iii) benefit of disabling the attack. The solution of an edge-game is used to formulate and solve for the secure planning problem known as a meta-game. We design an efficient heuristic by converting the problem to a shortest path problem using the edge cost as the solution of corresponding edge-games. We illustrate our findings through several insightful simulations.

Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.

Invertible neural networks (INNs) are neural network architectures with invertibility by design. Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning. However, their attractive properties often come at the cost of restricting the layer designs, which poses a question on their representation power: can we use these models to approximate sufficiently diverse functions? To answer this question, we have developed a general theoretical framework to investigate the representation power of INNs, building on a structure theorem of differential geometry. The framework simplifies the approximation problem of diffeomorphisms, which enables us to show the universal approximation properties of INNs. We apply the framework to two representative classes of INNs, namely Coupling-Flow-based INNs (CF-INNs) and Neural Ordinary Differential Equations (NODEs), and elucidate their high representation power despite the restrictions on their architectures.

The success of deep learning attracted interest in whether the brain learns hierarchical representations using gradient-based learning. However, current biologically plausible methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals, which is problematic in biologically realistic noisy environments and at odds with experimental evidence in neuroscience showing that top-down feedback can significantly influence neural activity. Building upon deep feedback control (DFC), a recently proposed credit assignment method, we combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization. Instead of gradually changing the network weights towards configurations with low output loss, weight updates gradually minimize the amount of feedback required from a controller that drives the network to the supervised output label. Moreover, we show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using a learning rule fully local in space and time. We complement our theoretical results with experiments on standard computer-vision benchmarks, showing competitive performance to backpropagation as well as robustness to noise. Overall, our work presents a fundamentally novel view of learning as control minimization, while sidestepping biologically unrealistic assumptions.

Models for dependent data are distinguished by their targets of inference. Marginal models are useful when interest lies in quantifying associations averaged across a population of clusters. When the functional form of a covariate-outcome association is unknown, flexible regression methods are needed to allow for potentially non-linear relationships. We propose a novel marginal additive model (MAM) for modelling cluster-correlated data with non-linear population-averaged associations. The proposed MAM is a unified framework for estimation and uncertainty quantification of a marginal mean model, combined with inference for between-cluster variability and cluster-specific prediction. We propose a fitting algorithm that enables efficient computation of standard errors and corrects for estimation of penalty terms. We demonstrate the proposed methods in simulations and in application to (i) a longitudinal study of beaver foraging behaviour, and (ii) a spatial analysis of Loaloa infection in West Africa. R code for implementing the proposed methodology is available at //github.com/awstringer1/mam.

北京阿比特科技有限公司