We study the survival bandit problem, a variant of the multi-armed bandit problem introduced in an open problem by Perotto et al. (2019), with a constraint on the cumulative reward; at each time step, the agent receives a (possibly negative) reward and if the cumulative reward becomes lower than a prespecified threshold, the procedure stops, and this phenomenon is called ruin. This is the first paper studying a framework where the ruin might occur but not always. We first discuss that a sublinear regret is unachievable under a naive definition of the regret. Next, we provide tight lower bounds on the probability of ruin (as well as matching policies). Based on this lower bound, we define the survival regret as an objective to minimize and provide a policy achieving a sublinear survival regret (at least in the case of integral rewards) when the time horizon $T$ is known.
We study two generalizations of classic clustering problems called dynamic ordered $k$-median and dynamic $k$-supplier, where the points that need clustering evolve over time, and we are allowed to move the cluster centers between consecutive time steps. In these dynamic clustering problems, the general goal is to minimize certain combinations of the service cost of points and the movement cost of centers, or to minimize one subject to some constraints on the other. We obtain a constant-factor approximation algorithm for dynamic ordered $k$-median under mild assumptions on the input. We give a 3-approximation for dynamic $k$-supplier and a multi-criteria approximation for its outlier version where some points can be discarded, when the number of time steps is two. We complement the algorithms with almost matching hardness results.
We are motivated by the problem of learning policies for robotic systems with rich sensory inputs (e.g., vision) in a manner that allows us to guarantee generalization to environments unseen during training. We provide a framework for providing such generalization guarantees by leveraging a finite dataset of real-world environments in combination with a (potentially inaccurate) generative model of environments. The key idea behind our approach is to utilize the generative model in order to implicitly specify a prior over policies. This prior is updated using the real-world dataset of environments by minimizing an upper bound on the expected cost across novel environments derived via Probably Approximately Correct (PAC)-Bayes generalization theory. We demonstrate our approach on two simulated systems with nonlinear/hybrid dynamics and rich sensing modalities: (i) quadrotor navigation with an onboard vision sensor, and (ii) grasping objects using a depth sensor. Comparisons with prior work demonstrate the ability of our approach to obtain stronger generalization guarantees by utilizing generative models. We also present hardware experiments for validating our bounds for the grasping task.
The combination of learning methods with Model Predictive Control (MPC) has attracted a significant amount of attention in the recent literature. The hope of this combination is to reduce the reliance of MPC schemes on accurate models, and to tap into the fast developing machine learning and reinforcement learning tools to exploit the growing amount of data available for many systems. In particular, the combination of reinforcement learning and MPC has been proposed as a viable and theoretically justified approach to introduce explainable, safe and stable policies in reinforcement learning. However, a formal theory detailing how the safety and stability of an MPC-based policy can be maintained through the parameter updates delivered by the learning tools is still lacking. This paper addresses this gap. The theory is developed for the generic Robust MPC case, and applied in simulation in the robust tube-based linear MPC case, where the theory is fairly easy to deploy in practice. The paper focuses on Reinforcement Learning as a learning tool, but it applies to any learning method that updates the MPC parameters online.
We present regret minimization algorithms for stochastic contextual MDPs under minimum reachability assumption, using an access to an offline least square regression oracle. We analyze three different settings: where the dynamics is known, where the dynamics is unknown but independent of the context and the most challenging setting where the dynamics is unknown and context-dependent. For the latter, our algorithm obtains $ \tilde{O}\left( \max\{H,{1}/{p_{min}}\}H|S|^{3/2}\sqrt{|A|T\log(\max\{|\mathcal{F}|,|\mathcal{P}|\}/\delta)} \right)$ regret bound, with probability $1-\delta$, where $\mathcal{P}$ and $\mathcal{F}$ are finite and realizable function classes used to approximate the dynamics and rewards respectively, $p_{min}$ is the minimum reachability parameter, $S$ is the set of states, $A$ the set of actions, $H$ the horizon, and $T$ the number of episodes. To our knowledge, our approach is the first optimistic approach applied to contextual MDPs with general function approximation (i.e., without additional knowledge regarding the function class, such as it being linear and etc.). In addition, we present a lower bound of $\Omega(\sqrt{T H |S| |A| \ln(|\mathcal{F}|/|S|)/\ln(|A|)})$, on the expected regret which holds even in the case of known dynamics.
Algorithmic fairness is an increasingly important field concerned with detecting and mitigating biases in machine learning models. There has been a wealth of literature for algorithmic fairness in regression and classification however there has been little exploration of the field for survival analysis. Survival analysis is the prediction task in which one attempts to predict the probability of an event occurring over time. Survival predictions are particularly important in sensitive settings such as when utilising machine learning for diagnosis and prognosis of patients. In this paper we explore how to utilise existing survival metrics to measure bias with group fairness metrics. We explore this in an empirical experiment with 29 survival datasets and 8 measures. We find that measures of discrimination are able to capture bias well whereas there is less clarity with measures of calibration and scoring rules. We suggest further areas for research including prediction-based fairness metrics for distribution predictions.
In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time.
Proximal Policy Optimization (PPO) is a ubiquitous on-policy reinforcement learning algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent settings. This is often due to the belief that PPO is significantly less sample efficient than off-policy methods in multi-agent systems. In this work, we carefully study the performance of PPO in cooperative multi-agent settings. We show that PPO-based multi-agent algorithms achieve surprisingly strong performance in four popular multi-agent testbeds: the particle-world environments, the StarCraft multi-agent challenge, the Hanabi challenge, and Google Research Football, with minimal hyperparameter tuning and without any domain-specific algorithmic modifications or architectures. Importantly, compared to strong off-policy methods, PPO often achieves competitive or superior results in both final rewards and sample efficiency. Finally, through ablation studies, we analyze implementation and hyperparameter factors that are critical to PPO's empirical performance, and give concrete practical suggestions regarding these factors. Our results show that when using these practices, simple PPO-based methods are a strong baseline in cooperative multi-agent reinforcement learning. Source code is released at //github.com/marlbenchmark/on-policy.
Policy learning in multi-agent reinforcement learning (MARL) is challenging due to the exponential growth of joint state-action space with respect to the number of agents. To achieve higher scalability, the paradigm of centralized training with decentralized execution (CTDE) is broadly adopted with factorized structure in MARL. However, we observe that existing CTDE algorithms in cooperative MARL cannot achieve optimality even in simple matrix games. To understand this phenomenon, we introduce a framework of Generalized Multi-Agent Actor-Critic with Policy Factorization (GPF-MAC), which characterizes the learning of factorized joint policies, i.e., each agent's policy only depends on its own observation-action history. We show that most popular CTDE MARL algorithms are special instances of GPF-MAC and may be stuck in a suboptimal joint policy. To address this issue, we present a novel transformation framework that reformulates a multi-agent MDP as a special "single-agent" MDP with a sequential structure and can allow employing off-the-shelf single-agent reinforcement learning (SARL) algorithms to efficiently learn corresponding multi-agent tasks. This transformation retains the optimality guarantee of SARL algorithms into cooperative MARL. To instantiate this transformation framework, we propose a Transformed PPO, called T-PPO, which can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.
AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.
Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.