亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate the average derivative. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machine learning (ML) methods to preserve statistical power while modeling high-dimensional relationships. We construct our estimator using tools from double de-biased machine learning (DML) literature. Monte Carlo simulations in a nonlinear panel setting show that our method estimates the average derivative with low bias and variance relative to other approaches. Lastly, we use our estimator to measure the impact of extreme heat on United States (U.S.) corn production, after flexibly controlling for precipitation and other weather features. Our approach yields extreme heat effect estimates that are 50% larger than estimates using linear regression. This difference in estimates corresponds to an additional $3.17 billion in annual damages by 2050 under median climate scenarios. We also estimate a dose-response curve, which shows that damages from extreme heat decline somewhat in counties with more extreme heat exposure.

相關內容

In recent years, concept-based approaches have emerged as some of the most promising explainability methods to help us interpret the decisions of Artificial Neural Networks (ANNs). These methods seek to discover intelligible visual 'concepts' buried within the complex patterns of ANN activations in two key steps: (1) concept extraction followed by (2) importance estimation. While these two steps are shared across methods, they all differ in their specific implementations. Here, we introduce a unifying theoretical framework that comprehensively defines and clarifies these two steps. This framework offers several advantages as it allows us: (i) to propose new evaluation metrics for comparing different concept extraction approaches; (ii) to leverage modern attribution methods and evaluation metrics to extend and systematically evaluate state-of-the-art concept-based approaches and importance estimation techniques; (iii) to derive theoretical guarantees regarding the optimality of such methods. We further leverage our framework to try to tackle a crucial question in explainability: how to efficiently identify clusters of data points that are classified based on a similar shared strategy. To illustrate these findings and to highlight the main strategies of a model, we introduce a visual representation called the strategic cluster graph. Finally, we present //serre-lab.github.io/Lens, a dedicated website that offers a complete compilation of these visualizations for all classes of the ImageNet dataset.

This paper presents an algorithm for the preprocessing of observation data aimed at improving the robustness of orbit determination tools. Two objectives are fulfilled: obtain a refined solution to the initial orbit determination problem and detect possible outliers in the processed measurements. The uncertainty on the initial estimate is propagated forward in time and progressively reduced by exploiting sensor data available in said propagation window. Differential algebra techniques and a novel automatic domain splitting algorithm for second-order Taylor expansions are used to efficiently propagate uncertainties over time. A multifidelity approach is employed to minimize the computational effort while retaining the accuracy of the propagated estimate. At each observation epoch, a polynomial map is obtained by projecting the propagated states onto the observable space. Domains that do no overlap with the actual measurement are pruned thus reducing the uncertainty to be further propagated. Measurement outliers are also detected in this step. The refined estimate and retained observations are then used to improve the robustness of batch orbit determination tools. The effectiveness of the algorithm is demonstrated for a geostationary transfer orbit object using synthetic and real observation data from the TAROT network.

We propose a Dynamical System (DS) approach to learn complex, possibly periodic motion plans from kinesthetic demonstrations using Neural Ordinary Differential Equations (NODE). To ensure reactivity and robustness to disturbances, we propose a novel approach that selects a target point at each time step for the robot to follow, by combining tools from control theory and the target trajectory generated by the learned NODE. A correction term to the NODE model is computed online by solving a quadratic program that guarantees stability and safety using control Lyapunov functions and control barrier functions, respectively. Our approach outperforms baseline DS learning techniques on the LASA handwriting dataset and complex periodic trajectories. It is also validated on the Franka Emika robot arm to produce stable motions for wiping and stirring tasks that do not have a single attractor, while being robust to perturbations and safe around humans and obstacles.

The paper addresses asymptotic estimation of normal means under sparsity. The primary focus is estimation of multivariate normal means where we obtain exact asymptotic minimax error under global-local shrinkage prior. This extends the corresponding univariate work of Ghosh and Chakrabarti (2017). In addition, we obtain similar results for the Dirichlet-Laplace prior as considered in Bhattacharya, Pati, Pillai, and Dunson (2015). Also, following van der Pas, Szabo, and van der Vaart (2017), we have been able to derive credible sets for multivariate normal means under global-local priors.

Thematic analysis and other variants of inductive coding are widely used qualitative analytic methods within empirical legal studies (ELS). We propose a novel framework facilitating effective collaboration of a legal expert with a large language model (LLM) for generating initial codes (phase 2 of thematic analysis), searching for themes (phase 3), and classifying the data in terms of the themes (to kick-start phase 4). We employed the framework for an analysis of a dataset (n=785) of facts descriptions from criminal court opinions regarding thefts. The goal of the analysis was to discover classes of typical thefts. Our results show that the LLM, namely OpenAI's GPT-4, generated reasonable initial codes, and it was capable of improving the quality of the codes based on expert feedback. They also suggest that the model performed well in zero-shot classification of facts descriptions in terms of the themes. Finally, the themes autonomously discovered by the LLM appear to map fairly well to the themes arrived at by legal experts. These findings can be leveraged by legal researchers to guide their decisions in integrating LLMs into their thematic analyses, as well as other inductive coding projects.

This paper focuses on secure backscatter transmission in the presence of a passive multi-antenna eavesdropper through a symbiotic radio (SR) network. Specifically, a single-antenna backscatter device (BD) aims to transmit confidential information to a primary receiver (PR) by using a multi-antenna primary transmitter's (PT) signal, where the received symbols are jointly decoded at the PR. Our objective is to achieve confidential communications for BD while ensuring that the primary system's quality of service (QoS) requirements are met. We propose an alternating optimisation algorithm that maximises the achievable secrecy rate of BD by jointly optimising primary transmit beamforming and power sharing between information and artificial noise (AN) signals. Numerical results verify our analytical claims on the optimality of the proposed solution and the proposed methodology's underlying low complexity. Additionally, our simulations provide nontrivial design insights into the critical system parameters and quantify the achievable gains over the relevant benchmark schemes.

Emerging applications of robotics, and concerns about their impact, require the research community to put human-centric objectives front-and-center. To meet this challenge, we advocate an interdisciplinary approach, socially cognizant robotics, which synthesizes technical and social science methods. We argue that this approach follows from the need to empower stakeholder participation (from synchronous human feedback to asynchronous societal assessment) in shaping AI-driven robot behavior at all levels, and leads to a range of novel research perspectives and problems both for improving robots' interactions with individuals and impacts on society. Drawing on these arguments, we develop best practices for socially cognizant robot design that balance traditional technology-based metrics (e.g. efficiency, precision and accuracy) with critically important, albeit challenging to measure, human and society-based metrics.

Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain where retrieving and labeling irregularities is often expensive. By combining the generative stability of a $\beta$-variational autoencoder (VAE) with the discriminative strengths of generative adversarial networks (GANs), we propose a novel model, $\beta$-VAEGAN. We investigate methods for composing anomaly scores based on the discriminative and reconstructive capabilities of our model. Existing work focuses on linear combinations of these components to determine if data is anomalous. We advance existing work by training a kernelized support vector machine (SVM) on the respective error components to also consider nonlinear relationships. This improves anomaly detection performance, while allowing faster optimization. Lastly, we use the deviations from the Gaussian prior of $\beta$-VAEGAN to form a novel anomaly score component. In comparison to state-of-the-art work, we improve the $F_1$ score during anomaly detection from 0.85 to 0.92 on the widely used MITBIH Arrhythmia Database.

This paper proposes a new methodology for deriving a point-based dimensionally homogeneous Jacobian, intended for performance evaluation and optimization of parallel manipulators with mixed degrees of freedom. Optimal manipulator often rely on performance indices obtained from the Jacobian matrix. However, when manipulators exhibit mixed translational and rotational freedoms, the conventional Jacobian's inconsistency of units lead to unbalanced optimal result. Addressing this issue, a point-based dimensionally homogeneous Jacobian has appeared as a prominent solution. However, existing point-based approaches for formulating dimensionally homogeneous Jacobian are applicable to a limited variety of parallel manipulators. Moreover, they are complicated and less intuitive. This paper introduces an extended selection matrix that combines component velocities from different points to describe the entire motion of moving plate. This proposed approach enables us to formulate an intuitive point-based, dimensionally homogeneous Jacobian, which can be applied to a wide variety of constrained parallel manipulators. To prove the validity of proposed method, a numerical example is provided utilizing a four-degree-of-freedom parallel manipulator.

This paper investigates robust beamforming for system-centric energy efficiency (EE) optimization in the vehicular integrated sensing and communication (ISAC) system, where the mobility of vehicles poses significant challenges to channel estimation. To obtain the optimal beamforming under channel uncertainty, we first formulate an optimization problem for maximizing the system EE under bounded channel estimation errors. Next, fractional programming and semidefinite relaxation (SDR) are utilized to relax the rank-1 constraints. We further use Schur complement and S-Procedure to transform Cramer-Rao bound (CRB) and channel estimation error constraints into convex forms, respectively. Based on the Lagrangian dual function and Karush-Kuhn-Tucker (KKT) conditions, it is proved that the optimal beamforming solution is rank-1. Finally, we present comprehensive simulation results to demonstrate two key findings: 1) the proposed algorithm exhibits a favorable convergence rate, and 2) the approach effectively mitigates the impact of channel estimation errors.

北京阿比特科技有限公司