亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predictive black-box models can exhibit high accuracy but their opaque nature hinders their uptake in safety-critical deployment environments. Explanation methods (XAI) can provide confidence for decision-making through increased transparency. However, existing XAI methods are not tailored towards models in sensitive domains where one predictor is of special interest, such as a treatment effect in a clinical model, or ethnicity in policy models. We introduce Path-Wise Shapley effects (PWSHAP), a framework for assessing the targeted effect of a binary (e.g.~treatment) variable from a complex outcome model. Our approach augments the predictive model with a user-defined directed acyclic graph (DAG). The method then uses the graph alongside on-manifold Shapley values to identify effects along causal pathways whilst maintaining robustness to adversarial attacks. We establish error bounds for the identified path-wise Shapley effects and for Shapley values. We show PWSHAP can perform local bias and mediation analyses with faithfulness to the model. Further, if the targeted variable is randomised we can quantify local effect modification. We demonstrate the resolution, interpretability, and true locality of our approach on examples and a real-world experiment.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 圖卷積神經網絡/圖卷積網絡 · Networking · GROUP · 圖卷積 ·
2023 年 8 月 16 日

Accurate pedestrian trajectory prediction is of great importance for downstream tasks such as autonomous driving and mobile robot navigation. Fully investigating the social interactions within the crowd is crucial for accurate pedestrian trajectory prediction. However, most existing methods do not capture group level interactions well, focusing only on pairwise interactions and neglecting group-wise interactions. In this work, we propose a hierarchical graph convolutional network, HGCN-GJS, for trajectory prediction which well leverages group level interactions within the crowd. Furthermore, we introduce a novel joint sampling scheme for modeling the joint distribution of multiple pedestrians in the future trajectories. Based on the group information, this scheme associates the trajectory of one person with the trajectory of other people in the group, but maintains the independence of the trajectories of outsiders. We demonstrate the performance of our network on several trajectory prediction datasets, achieving state-of-the-art results on all datasets considered.

Raw videos have been proven to own considerable feature redundancy where in many cases only a portion of frames can already meet the requirements for accurate recognition. In this paper, we are interested in whether such redundancy can be effectively leveraged to facilitate efficient inference in continuous sign language recognition (CSLR). We propose a novel adaptive model (AdaBrowse) to dynamically select a most informative subsequence from input video sequences by modelling this problem as a sequential decision task. In specific, we first utilize a lightweight network to quickly scan input videos to extract coarse features. Then these features are fed into a policy network to intelligently select a subsequence to process. The corresponding subsequence is finally inferred by a normal CSLR model for sentence prediction. As only a portion of frames are processed in this procedure, the total computations can be considerably saved. Besides temporal redundancy, we are also interested in whether the inherent spatial redundancy can be seamlessly integrated together to achieve further efficiency, i.e., dynamically selecting a lowest input resolution for each sample, whose model is referred to as AdaBrowse+. Extensive experimental results on four large-scale CSLR datasets, i.e., PHOENIX14, PHOENIX14-T, CSL-Daily and CSL, demonstrate the effectiveness of AdaBrowse and AdaBrowse+ by achieving comparable accuracy with state-of-the-art methods with 1.44$\times$ throughput and 2.12$\times$ fewer FLOPs. Comparisons with other commonly-used 2D CNNs and adaptive efficient methods verify the effectiveness of AdaBrowse. Code is available at \url{//github.com/hulianyuyy/AdaBrowse}.

Ability to test firmware on embedded devices is critical to discovering vulnerabilities prior to their adversarial exploitation. State-of-the-art automated testing methods rehost firmware in emulators and attempt to facilitate inputs from a diversity of methods (interrupt driven, status polling) and a plethora of devices (such as modems and GPS units). Despite recent progress to tackle peripheral input generation challenges in rehosting, a firmware's expectation of multi-byte magic values supplied from peripheral inputs for string operations still pose a significant roadblock. We solve the impediment posed by multi-byte magic strings in monolithic firmware. We propose feedback mechanisms for input-to-state mapping and retaining seeds for targeted replacement mutations with an efficient method to solve multi-byte comparisons. The feedback allows an efficient search over a combinatorial solution-space. We evaluate our prototype implementation, SplITS, with a diverse set of 21 real-world monolithic firmware binaries used in prior works, and 3 new binaries from popular open source projects. SplITS automatically solves 497% more multi-byte magic strings guarding further execution to uncover new code and bugs compared to state-of-the-art. In 11 of the 12 real-world firmware binaries with string comparisons, including those extensively analyzed by prior works, SplITS outperformed, statistically significantly. We observed up to 161% increase in blocks covered and discovered 6 new bugs that remained guarded by string comparisons. Significantly, deep and difficult to reproduce bugs guarded by comparisons, identified in prior work, were found consistently. To facilitate future research in the field, we release SplITS, the new firmware data sets, and bug analysis at //github.com/SplITS-Fuzzer

Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropic covariance estimate that uses the predicted score at a given pixel location, and a full covariance estimate via the local structure tensor of the learned score maps. Both methods are easy to implement and can be applied to any deep feature detector. We show that these covariances are directly related to errors in feature matching, leading to improvements in downstream tasks, including solving the perspective-n-point problem and motion-only bundle adjustment. Code is available at //github.com/javrtg/DAC

The importance of preventing microarchitectural timing side channels in security-critical applications has surged in recent years. Constant-time programming has emerged as a best-practice technique for preventing the leakage of secret information through timing. It is based on the assumption that the timing of certain basic machine instructions is independent of their respective input data. However, whether or not an instruction satisfies this data-independent timing criterion varies between individual processor microarchitectures. In this paper, we propose a novel methodology to formally verify data-oblivious behavior in hardware using standard property checking techniques. The proposed methodology is based on an inductive property that enables scalability even to complex out-of-order cores. We show that proving this inductive property is sufficient to exhaustively verify data-obliviousness at the microarchitectural level. In addition, the paper discusses several techniques that can be used to make the verification process easier and faster. We demonstrate the feasibility of the proposed methodology through case studies on several open-source designs. One case study uncovered a data-dependent timing violation in the extensively verified and highly secure IBEX RISC-V core. In addition to several hardware accelerators and in-order processors, our experiments also include RISC-V BOOM, a complex out-of-order processor, highlighting the scalability of the approach.

The rising demand for creating lifelike avatars in the digital realm has led to an increased need for generating high-quality human videos guided by textual descriptions and poses. We propose Dancing Avatar, designed to fabricate human motion videos driven by poses and textual cues. Our approach employs a pretrained T2I diffusion model to generate each video frame in an autoregressive fashion. The crux of innovation lies in our adept utilization of the T2I diffusion model for producing video frames successively while preserving contextual relevance. We surmount the hurdles posed by maintaining human character and clothing consistency across varying poses, along with upholding the background's continuity amidst diverse human movements. To ensure consistent human appearances across the entire video, we devise an intra-frame alignment module. This module assimilates text-guided synthesized human character knowledge into the pretrained T2I diffusion model, synergizing insights from ChatGPT. For preserving background continuity, we put forth a background alignment pipeline, amalgamating insights from segment anything and image inpainting techniques. Furthermore, we propose an inter-frame alignment module that draws inspiration from an auto-regressive pipeline to augment temporal consistency between adjacent frames, where the preceding frame guides the synthesis process of the current frame. Comparisons with state-of-the-art methods demonstrate that Dancing Avatar exhibits the capacity to generate human videos with markedly superior quality, both in terms of human and background fidelity, as well as temporal coherence compared to existing state-of-the-art approaches.

Generative text-to-image models have gained great popularity among the public for their powerful capability to generate high-quality images based on natural language prompts. However, developing effective prompts for desired images can be challenging due to the complexity and ambiguity of natural language. This research proposes PromptMagician, a visual analysis system that helps users explore the image results and refine the input prompts. The backbone of our system is a prompt recommendation model that takes user prompts as input, retrieves similar prompt-image pairs from DiffusionDB, and identifies special (important and relevant) prompt keywords. To facilitate interactive prompt refinement, PromptMagician introduces a multi-level visualization for the cross-modal embedding of the retrieved images and recommended keywords, and supports users in specifying multiple criteria for personalized exploration. Two usage scenarios, a user study, and expert interviews demonstrate the effectiveness and usability of our system, suggesting it facilitates prompt engineering and improves the creativity support of the generative text-to-image model.

Piecewise-affine (PWA) systems are widely used for modeling and control of robotics problems including modeling contact dynamics. A common approach is to encode the control problem of the PWA system as a Mixed-Integer Convex Program (MICP), which can be solved by general-purpose off-the-shelf MICP solvers. To mitigate the scalability challenge of solving these MICP problems, existing work focuses on devising efficient and strong formulations of the problems, while less effort has been spent on exploiting their specific structure to develop specialized solvers. The latter is the theme of our work. We focus on efficiently handling one-hot constraints, which are particularly relevant when encoding PWA dynamics. We have implemented our techniques in a tool, Soy, which organically integrates logical reasoning, arithmetic reasoning, and stochastic local search. For a set of PWA control benchmarks, Soy solves more problems, faster, than two state-of-the-art MICP solvers.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司