亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

National surveys of the healthcare system in the United States were conducted to characterize the structure of healthcare system and investigate the impact of evidence-based innovations in healthcare systems on healthcare services. Administrative data is additionally available to researchers raising the question of whether inferences about healthcare organizations based on the survey data can be enhanced by incorporating information from auxiliary data. Administrative data can provide information for dealing with under-coverage-bias and non-response in surveys and for capturing more sub-populations. In this study, we focus on the use of administrative claims data to improve estimates about means of survey items for the finite population. Auxiliary information from the claims data is incorporated using multiple imputation to impute values of non-responding or non-surveyed organizations. We derive multiple versions of imputation strategy, and the logical development of methodology is compared to two incumbent approaches: a na\"ive analysis that ignores the sampling probabilities and a traditional survey analysis weighting by the inverses of the sampling probabilities. , and illustrate the methods using data from The National Survey of Healthcare Organizations and Systems and The Centers for Medicare & Medicaid Services Medicare claims data to make inferences about relationships of characteristics of healthcare organizations and healthcare services they provide.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 生成模型 · 3D · 磁流變材料 · contrastive ·
2023 年 11 月 8 日

Generative modelling and synthetic data can be a surrogate for real medical imaging datasets, whose scarcity and difficulty to share can be a nuisance when delivering accurate deep learning models for healthcare applications. In recent years, there has been an increased interest in using these models for data augmentation and synthetic data sharing, using architectures such as generative adversarial networks (GANs) or diffusion models (DMs). Nonetheless, the application of synthetic data to tasks such as 3D magnetic resonance imaging (MRI) segmentation remains limited due to the lack of labels associated with the generated images. Moreover, many of the proposed generative MRI models lack the ability to generate arbitrary modalities due to the absence of explicit contrast conditioning. These limitations prevent the user from adjusting the contrast and content of the images and obtaining more generalisable data for training task-specific models. In this work, we propose brainSPADE3D, a 3D generative model for brain MRI and associated segmentations, where the user can condition on specific pathological phenotypes and contrasts. The proposed joint imaging-segmentation generative model is shown to generate high-fidelity synthetic images and associated segmentations, with the ability to combine pathologies. We demonstrate how the model can alleviate issues with segmentation model performance when unexpected pathologies are present in the data.

The task of community detection, which aims to partition a network into clusters of nodes to summarize its large-scale structure, has spawned the development of many competing algorithms with varying objectives. Some community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic generative model, while other methods are descriptive, dividing a network according to an objective motivated by a particular application, making it challenging to compare these methods on the same scale. Here we present a solution to this problem that associates any community detection objective, inferential or descriptive, with its corresponding implicit network generative model. This allows us to compute the description length of a network and its partition under arbitrary objectives, providing a principled measure to compare the performance of different algorithms without the need for "ground truth" labels. Our approach also gives access to instances of the community detection problem that are optimal to any given algorithm, and in this way reveals intrinsic biases in popular descriptive methods, explaining their tendency to overfit. Using our framework, we compare a number of community detection methods on artificial networks, and on a corpus of over 500 structurally diverse empirical networks. We find that more expressive community detection methods exhibit consistently superior compression performance on structured data instances, without having degraded performance on a minority of situations where more specialized algorithms perform optimally. Our results undermine the implications of the "no free lunch" theorem for community detection, both conceptually and in practice, since it is confined to unstructured data instances, unlike relevant community detection problems which are structured by requirement.

In the context of clinical and biomedical studies, joint frailty models have been developed to study the joint temporal evolution of recurrent and terminal events, capturing both the heterogeneous susceptibility to experiencing a new episode and the dependence between the two processes. While discretely-distributed frailty is usually more exploitable by clinicians and healthcare providers, existing literature on joint frailty models predominantly assumes continuous distributions for the random effects. In this article, we present a novel joint frailty model that assumes bivariate discretely-distributed non-parametric frailties, with an unknown finite number of mass points. This approach facilitates the identification of latent structures among subjects, grouping them into sub-populations defined by a shared frailty value. We propose an estimation routine via Expectation-Maximization algorithm, which not only estimates the number of subgroups but also serves as an unsupervised classification tool. This work is motivated by a study of patients with Heart Failure (HF) receiving ACE inhibitors treatment in the Lombardia region of Italy. Recurrent events of interest are hospitalizations due to HF and terminal event is death for any cause.

Numerous applications in the field of molecular communications (MC) such as healthcare systems are often event-driven. The conventional Shannon capacity may not be the appropriate metric for assessing performance in such cases. We propose the identification (ID) capacity as an alternative metric. Particularly, we consider randomized identification (RI) over the discrete-time Poisson channel (DTPC), which is typically used as a model for MC systems that utilize molecule-counting receivers. In the ID paradigm, the receiver's focus is not on decoding the message sent. However, he wants to determine whether a message of particular significance to him has been sent or not. In contrast to Shannon transmission codes, the size of ID codes for a Discrete Memoryless Channel (DMC) grows doubly exponentially fast with the blocklength, if randomized encoding is used. In this paper, we derive the capacity formula for RI over the DTPC subject to some peak and average power constraints. Furthermore, we analyze the case of state-dependent DTPC.

Donoho and Kipnis (2022) showed that the the higher criticism (HC) test statistic has a non-Gaussian phase transition but remarked that it is probably not optimal, in the detection of sparse differences between two large frequency tables when the counts are low. The setting can be considered to be heterogeneous, with cells containing larger total counts more able to detect smaller differences. We provide a general study here of sparse detection arising from such heterogeneous settings, and showed that optimality of the HC test statistic requires thresholding, for example in the case of frequency table comparison, to restrict to p-values of cells with total counts exceeding a threshold. The use of thresholding also leads to optimality of the HC test statistic when it is applied on the sparse Poisson means model of Arias-Castro and Wang (2015). The phase transitions we consider here are non-Gaussian, and involve an interplay between the rate functions of the response and sample size distributions. We also showed, both theoretically and in a numerical study, that applying thresholding to the Bonferroni test statistic results in better sparse mixture detection in heterogeneous settings.

3D mesh segmentation is an important task with many biomedical applications. The human body has bilateral symmetry and some variations in organ positions. It allows us to expect a positive effect of rotation and inversion invariant layers in convolutional neural networks that perform biomedical segmentations. In this study, we show the impact of weight symmetry in neural networks that perform 3D mesh segmentation. We analyze the problem of 3D mesh segmentation for pathological vessel structures (aneurysms) and conventional anatomical structures (endocardium and epicardium of ventricles). Local geometrical features are encoded as sampling from the signed distance function, and the neural network performs prediction for each mesh node. We show that weight symmetry gains from 1 to 3% of additional accuracy and allows decreasing the number of trainable parameters up to 8 times without suffering the performance loss if neural networks have at least three convolutional layers. This also works for very small training sets.

We demonstrate a validity problem of machine learning in the vital application area of disease diagnosis in medicine. It arises when target labels in training data are determined by an indirect measurement, and the fundamental measurements needed to determine this indirect measurement are included in the input data representation. Machine learning models trained on this data will learn nothing else but to exactly reconstruct the known target definition. Such models show perfect performance on similarly constructed test data but will fail catastrophically on real-world examples where the defining fundamental measurements are not or only incompletely available. We present a general procedure allowing identification of problematic datasets and black-box machine learning models trained on them, and exemplify our detection procedure on the task of early prediction of sepsis.

The use of the non-parametric Restricted Mean Survival Time endpoint (RMST) has grown in popularity as trialists look to analyse time-to-event outcomes without the restrictions of the proportional hazards assumption. In this paper, we evaluate the power and type I error rate of the parametric and non-parametric RMST estimators when treatment effect is explained by multiple covariates, including an interaction term. Utilising the RMST estimator in this way allows the combined treatment effect to be summarised as a one-dimensional estimator, which is evaluated using a one-sided hypothesis Z-test. The estimators are either fully specified or misspecified, both in terms of unaccounted covariates or misspecified knot points (where trials exhibit crossing survival curves). A placebo-controlled trial of Gamma interferon is used as a motivating example to simulate associated survival times. When correctly specified, the parametric RMST estimator has the greatest power, regardless of the time of analysis. The misspecified RMST estimator generally performs similarly when covariates mirror those of the fitted case study dataset. However, as the magnitude of the unaccounted covariate increases, the associated power of the estimator decreases. In all cases, the non-parametric RMST estimator has the lowest power, and power remains very reliant on the time of analysis (with a later analysis time correlated with greater power).

The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, i.e. network structures formed by multiple interacting networks (the layers), constitutes a fast-growing field. In several environmental applications, the layers of a multilayer network are modelled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g. biological traits). The present paper first discusses two main techniques for combining the multi-layered information into a single network (the so-called monoplex), i.e. Similarity Network Fusion (SNF) and Similarity Matrix Average (SMA). Then, the effectiveness of the two methods is tested on a real-world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.

Individualized treatment rules (ITRs) for treatment recommendation is an important topic for precision medicine as not all beneficial treatments work well for all individuals. Interpretability is a desirable property of ITRs, as it helps practitioners make sense of treatment decisions, yet there is a need for ITRs to be flexible to effectively model complex biomedical data for treatment decision making. Many ITR approaches either focus on linear ITRs, which may perform poorly when true optimal ITRs are nonlinear, or black-box nonlinear ITRs, which may be hard to interpret and can be overly complex. This dilemma indicates a tension between interpretability and accuracy of treatment decisions. Here we propose an additive model-based nonlinear ITR learning method that balances interpretability and flexibility of the ITR. Our approach aims to strike this balance by allowing both linear and nonlinear terms of the covariates in the final ITR. Our approach is parsimonious in that the nonlinear term is included in the final ITR only when it substantially improves the ITR performance. To prevent overfitting, we combine cross-fitting and a specialized information criterion for model selection. Through extensive simulations, we show that our methods are data-adaptive to the degree of nonlinearity and can favorably balance ITR interpretability and flexibility. We further demonstrate the robust performance of our methods with an application to a cancer drug sensitive study.

北京阿比特科技有限公司