亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predicting the future trajectories of dynamic agents in complex environments is crucial for a variety of applications, including autonomous driving, robotics, and human-computer interaction. It is a challenging task as the behavior of the agent is unknown and intrinsically multimodal. Our key insight is that the agents behaviors are influenced not only by their past trajectories and their interaction with their immediate environment but also largely with their long term waypoint (LTW). In this paper, we study the impact of adding a long-term goal on the performance of a trajectory prediction framework. We present an interpretable long term waypoint-driven prediction framework (WayDCM). WayDCM first predict an agent's intermediate goal (IG) by encoding his interactions with the environment as well as his LTW using a combination of a Discrete choice Model (DCM) and a Neural Network model (NN). Then, our model predicts the corresponding trajectories. This is in contrast to previous work which does not consider the ultimate intent of the agent to predict his trajectory. We evaluate and show the effectiveness of our approach on the Waymo Open dataset.

相關內容

Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to $20\times \sim 5000\times$. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.

Primal-dual methods have a natural application in Safe Reinforcement Learning (SRL), posed as a constrained policy optimization problem. In practice however, applying primal-dual methods to SRL is challenging, due to the inter-dependency of the learning rate (LR) and Lagrangian multipliers (dual variables) each time an embedded unconstrained RL problem is solved. In this paper, we propose, analyze and evaluate adaptive primal-dual (APD) methods for SRL, where two adaptive LRs are adjusted to the Lagrangian multipliers so as to optimize the policy in each iteration. We theoretically establish the convergence, optimality and feasibility of the APD algorithm. Finally, we conduct numerical evaluation of the practical APD algorithm with four well-known environments in Bullet-Safey-Gym employing two state-of-the-art SRL algorithms: PPO-Lagrangian and DDPG-Lagrangian. All experiments show that the practical APD algorithm outperforms (or achieves comparable performance) and attains more stable training than the constant LR cases. Additionally, we substantiate the robustness of selecting the two adaptive LRs by empirical evidence.

Object detection and multiple object tracking (MOT) are essential components of self-driving systems. Accurate detection and uncertainty quantification are both critical for onboard modules, such as perception, prediction, and planning, to improve the safety and robustness of autonomous vehicles. Collaborative object detection (COD) has been proposed to improve detection accuracy and reduce uncertainty by leveraging the viewpoints of multiple agents. However, little attention has been paid to how to leverage the uncertainty quantification from COD to enhance MOT performance. In this paper, as the first attempt to address this challenge, we design an uncertainty propagation framework called MOT-CUP. Our framework first quantifies the uncertainty of COD through direct modeling and conformal prediction, and propagates this uncertainty information into the motion prediction and association steps. MOT-CUP is designed to work with different collaborative object detectors and baseline MOT algorithms. We evaluate MOT-CUP on V2X-Sim, a comprehensive collaborative perception dataset, and demonstrate a 2% improvement in accuracy and a 2.67X reduction in uncertainty compared to the baselines, e.g. SORT and ByteTrack. In scenarios characterized by high occlusion levels, our MOT-CUP demonstrates a noteworthy $4.01\%$ improvement in accuracy. MOT-CUP demonstrates the importance of uncertainty quantification in both COD and MOT, and provides the first attempt to improve the accuracy and reduce the uncertainty in MOT based on COD through uncertainty propagation. Our code is public on //coperception.github.io/MOT-CUP/.

Interpretability and transparency are essential for incorporating causal effect models from observational data into policy decision-making. They can provide trust for the model in the absence of ground truth labels to evaluate the accuracy of such models. To date, attempts at transparent causal effect estimation consist of applying post hoc explanation methods to black-box models, which are not interpretable. Here, we present BICauseTree: an interpretable balancing method that identifies clusters where natural experiments occur locally. Our approach builds on decision trees with a customized objective function to improve balancing and reduce treatment allocation bias. Consequently, it can additionally detect subgroups presenting positivity violations, exclude them, and provide a covariate-based definition of the target population we can infer from and generalize to. We evaluate the method's performance using synthetic and realistic datasets, explore its bias-interpretability tradeoff, and show that it is comparable with existing approaches.

Numerical models have long been used to understand geoscientific phenomena, including tidal currents, crucial for renewable energy production and coastal engineering. However, their computational cost hinders generating data of varying resolutions. As an alternative, deep learning-based downscaling methods have gained traction due to their faster inference speeds. But most of them are limited to only inference fixed scale and overlook important characteristics of target geoscientific data. In this paper, we propose a novel downscaling framework for tidal current data, addressing its unique characteristics, which are dissimilar to images: heterogeneity and local dependency. Moreover, our framework can generate any arbitrary-scale output utilizing a continuous representation model. Our proposed framework demonstrates significantly improved flow velocity predictions by 93.21% (MSE) and 63.85% (MAE) compared to the Baseline model while achieving a remarkable 33.2% reduction in FLOPs.

Despite advances in generative methods, accurately modeling the distribution of graphs remains a challenging task primarily because of the absence of predefined or inherent unique graph representation. Two main strategies have emerged to tackle this issue: 1) restricting the number of possible representations by sorting the nodes, or 2) using permutation-invariant/equivariant functions, specifically Graph Neural Networks (GNNs). In this paper, we introduce a new framework named Discrete Graph Auto-Encoder (DGAE), which leverages the strengths of both strategies and mitigate their respective limitations. In essence, we propose a strategy in 2 steps. We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations, each node being represented by a sequence of quantized vectors. In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model based on the Transformer architecture. Through multiple experimental evaluations, we demonstrate the competitive performances of our model in comparison to the existing state-of-the-art across various datasets. Various ablation studies support the interest of our method.

For turbulent problems of industrial scale, computational cost may become prohibitive due to the stability constraints associated with explicit time discretization of the underlying conservation laws. On the other hand, implicit methods allow for larger time-step sizes but require exorbitant computational resources. Implicit-explicit (IMEX) formulations combine both temporal approaches, using an explicit method in nonstiff portions of the domain and implicit in stiff portions. While these methods can be shown to be orders of magnitude faster than typical explicit discretizations, they are still limited by their implicit discretization in terms of cost. Hybridization reduces the scaling of these systems to an effective lower dimension, which allows the system to be solved at significant speedup factors compared to standard implicit methods. This work proposes an IMEX scheme that combines hybridized and standard flux reconstriction (FR) methods to tackle geometry-induced stiffness. By using the so-called transmission conditions, an overall conservative formulation can be obtained after combining both explicit FR and hybridized implicit FR methods. We verify and apply our approach to a series of numerical examples, including a multi-element airfoil at Reynolds number 1.7 million. Results demonstrate speedup factors of four against standard IMEX formulations and at least 15 against standard explicit formulations for the same problem.

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous epsilon-differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司