亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quadratic decaying property of the information rate function states that given a fixed conditional distribution $p_{\mathsf{Y}|\mathsf{X}}$, the mutual information between the (finite) discrete random variables $\mathsf{X}$ and $\mathsf{Y}$ decreases at least quadratically in the Euclidean distance as $p_\mathsf{X}$ moves away from the capacity-achieving input distributions. It is a property of the information rate function that is particularly useful in the study of higher order asymptotics and finite blocklength information theory, where it was already implicitly used by Strassen [1] and later, more explicitly, by Polyanskiy-Poor-Verd\'u [2]. However, the proofs outlined in both works contain gaps that are nontrivial to close. This comment provides an alternative, complete proof of this property.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 極小值 · Tensor · 優化器 · 全局極小值 ·
2023 年 6 月 15 日

We consider the non-convex optimization problem associated with the decomposition of a real symmetric tensor into a sum of rank one terms. Use is made of the rich symmetry structure to derive Puiseux series representations of families of critical points, and so obtain precise analytic estimates on the critical values and the Hessian spectrum. The sharp results make possible an analytic characterization of various geometric obstructions to local optimization methods, revealing in particular a complex array of saddles and local minima which differ by their symmetry, structure and analytic properties. A desirable phenomenon, occurring for all critical points considered, concerns the index of a point, i.e., the number of negative Hessian eigenvalues, increasing with the value of the objective function. Lastly, a Newton polytope argument is used to give a complete enumeration of all critical points of fixed symmetry, and it is shown that contrarily to the set of global minima which remains invariant under different choices of tensor norms, certain families of non-global minima emerge, others disappear.

Trust is the foundation of every area of life. Without it, it is difficult to build lasting relationships. Unfortunately, in recent years, trust has been severely damaged by the spread of fake news and disinformation, which has become a serious social problem. In addition to trust, the factor influencing interpersonal relationships is perceived attractiveness, which is currently created to a large extent by digital media. Understanding the principles of judging others can be helpful in fighting prejudice and rebuilding trust in society. One way to learn about people's choices is to record their brain activity as they make choices. The article presents an experiment in which the faces of different people were presented, and the participants' task was to assess how much they can trust a given person and how attractive they are. During the study, the EEG signal was recorded, which was used to build models of logistic regression classifiers. In addition, the most active areas of the brain that participate in the assessment of trust and attractiveness of the face were indicated.

This paper examines the distribution of order statistics taken from simple-random-sampling without replacement (SRSWOR) from a finite population with values 1,...,N. This distribution is a shifted version of the beta-binomial distribution, parameterised in a particular way. We derive the distribution and show how it relates to the distribution of order statistics under IID sampling from a uniform distribution over the unit interval. We examine properties of the distribution, including moments and asymptotic results. We also generalise the distribution to sampling without replacement of order statistics from an arbitrary finite population. We examine the properties of the order statistics for inference about an unknown population size (called the German tank problem) and we derive relevant estimation results based on observation of an arbitrary set of order statistics. We also introduce an algorithm that simulates sampling without replacement of order statistics from an arbitrary finite population without having to generate the entire sample.

This paper addresses two fundamental problems in diffusive molecular communication: characterizing the first arrival position (FAP) density and determining the information transmission capacity of FAP channels. Previous studies on FAP channel models, mostly captured by the density function of noise, have been limited to specific spatial dimensions, drift directions, and receiver geometries. In response, we propose a unified solution for identifying the FAP density in molecular communication systems with fully-absorbing receivers. Leveraging stochastic analysis tools, we derive a concise expression with universal applicability, covering any spatial dimension, drift direction, and receiver shape. We demonstrate that several existing FAP density formulas are special cases of this innovative expression. Concurrently, we establish explicit upper and lower bounds on the capacity of three-dimensional, vertically-drifted FAP channels, drawing inspiration from vector Gaussian interference channels. In the course of deriving these bounds, we unravel an explicit analytical expression for the characteristic function of vertically-drifted FAP noise distributions, providing a more compact characterization compared to the density function. Notably, this expression sheds light on previously undiscovered weak stability properties intrinsic to vertically-drifted FAP noise distributions.

On small neighborhoods of the capacity-achieving input distributions, the decrease of the mutual information with the distance to the capacity-achieving input distributions is bounded below by a linear function of the square of the distance to the capacity-achieving input distributions for all channels with (possibly multiple) linear constraints and finite input sets using an identity due to Tops{\o}e and Pinsker's inequality. Counter examples demonstrating non-existence of such a quadratic bound are provided for the case of infinite many linear constraints and the case of infinite input sets. Using a Taylor series approximation, rather than Pinsker's inequality, the exact characterization of the slowest decrease of the mutual information with the distance to the capacity-achieving input distributions is determined on small neighborhoods of the capacity-achieving input distributions. Analogous results are established for classical-quantum channels whose output density operators are defined on a separable Hilbert spaces. Implications of these observations for the channel coding problem and applications of the proof technique to related problems are discussed.

Determining capacities of quantum channels is a fundamental question in quantum information theory. Despite having rigorous coding theorems quantifying the flow of information across quantum channels, their capacities are poorly understood due to super-additivity effects. Studying these phenomena is important for deepening our understanding of quantum information, yet simple and clean examples of super-additive channels are scarce. Here we study a family of channels called platypus channels. Its simplest member, a qutrit channel, is shown to display super-additivity of coherent information when used jointly with a variety of qubit channels. Higher-dimensional family members display super-additivity of quantum capacity together with an erasure channel. Subject to the "spin-alignment conjecture" introduced in the companion paper [IEEE Trans. Inf. Theory 69(6), pp. 3825-3849, 2023; arXiv:2202.08380], our results on super-additivity of quantum capacity extend to lower-dimensional channels as well as larger parameter ranges. In particular, super-additivity occurs between two weakly additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a single, novel transmission strategy achieves super-additivity in all examples. Our results show that super-additivity is much more prevalent than previously thought. It can occur across a wide variety of channels, even when both participating channels have large quantum capacity.

Understanding quantum channels and the strange behavior of their capacities is a key objective of quantum information theory. Here we study a remarkably simple, low-dimensional, single-parameter family of quantum channels with exotic quantum information-theoretic features. As the simplest example from this family, we focus on a qutrit-to-qutrit channel that is intuitively obtained by hybridizing together a simple degradable channel and a completely useless qubit channel. Such hybridizing makes this channel's capacities behave in a variety of interesting ways. For instance, the private and classical capacity of this channel coincide and can be explicitly calculated, even though the channel does not belong to any class for which the underlying information quantities are known to be additive. Moreover, the quantum capacity of the channel can be computed explicitly, given a clear and compelling conjecture is true. This "spin alignment conjecture," which may be of independent interest, is proved in certain special cases and additional numerical evidence for its validity is provided. Finally, we generalize the qutrit channel in two ways, and the resulting channels and their capacities display similarly rich behavior. In the companion paper [Phys. Rev. Lett. 130, 200801 (2023); arXiv:2202.08377], we further show that the qutrit channel demonstrates superadditivity when transmitting quantum information jointly with a variety of assisting channels, in a manner unknown before.

We consider the non-convex optimization problem associated with the decomposition of a real symmetric tensor into a sum of rank one terms. Use is made of the rich symmetry structure to derive Puiseux series representations of families of critical points, and so obtain precise analytic estimates on the critical values and the Hessian spectrum. The sharp results make possible an analytic characterization of various geometric obstructions to local optimization methods, revealing in particular a complex array of saddles and local minima which differ by their symmetry, structure and analytic properties. A desirable phenomenon, occurring for all critical points considered, concerns the index of a point, i.e., the number of negative Hessian eigenvalues, increasing with the value of the objective function. Lastly, a Newton polytope argument is used to give a complete enumeration of all critical points of fixed symmetry, and it is shown that contrarily to the set of global minima which remains invariant under different choices of tensor norms, certain families of non-global minima emerge, others disappear.

We consider communication over channels whose statistics are not known in full, but can be parameterized as a finite family of memoryless channels. A typical approach to address channel uncertainty is to design codes for the worst channel in the family, resulting in the well-known compound channel capacity. Although this approach is robust, it may suffer a significant loss of performance if the capacity-achieving distribution of the worst channel attains low rates over other channels. In this work, we cope with channel uncertainty through the lens of {\em competitive analysis}. The main idea is to optimize a relative metric that compares the performance of the designed code and a clairvoyant code that has access to the true channel. To allow communication rates that adapt to the channel at use, we consider rateless codes with a fixed number of message bits and random decoding times. We propose two competitive metrics: the competitive ratio between the expected rates of the two codes, and a regret defined as the difference between the expected rates. The competitive ratio, for instance, provides a percentage guarantee on the expected rate of the designed code when compared to the rate of the clairvoyant code that knows the channel at hand. Our main results are single-letter expressions for the optimal {\em competitive-ratio} and {\em regret}, expressed as a max-min or min-max optimization. Several examples illustrate the benefits of the competitive analysis approach to code design compared to the compound channel.

This paper addresses channel estimation for linear time-varying (LTV) wireless propagation links under the assumption of double sparsity i.e., sparsity in both the delay and the Doppler domains. Affine frequency division multiplexing (AFDM), a recently proposed waveform, is shown to be optimal (in a sense that we make explicit) for this problem. With both mathematical analysis and numerical results, the minimal pilot and guard overhead needed for achieving a target mean squared error (MSE) while performing channel estimation is shown to be the smallest when AFDM is employed instead of both conventional and recently proposed waveforms.

北京阿比特科技有限公司