亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper examines the distribution of order statistics taken from simple-random-sampling without replacement (SRSWOR) from a finite population with values 1,...,N. This distribution is a shifted version of the beta-binomial distribution, parameterised in a particular way. We derive the distribution and show how it relates to the distribution of order statistics under IID sampling from a uniform distribution over the unit interval. We examine properties of the distribution, including moments and asymptotic results. We also generalise the distribution to sampling without replacement of order statistics from an arbitrary finite population. We examine the properties of the order statistics for inference about an unknown population size (called the German tank problem) and we derive relevant estimation results based on observation of an arbitrary set of order statistics. We also introduce an algorithm that simulates sampling without replacement of order statistics from an arbitrary finite population without having to generate the entire sample.

相關內容

The widespread use of maximum Jeffreys'-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (2021, Biometrika), who show that the resulting estimates are also always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically linearly and slower than the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing $O(n)$ quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. We assess the procedures through a real-data application with millions of observations, and in high-dimensional logistic regression, where a large-scale simulation experiment produces concrete evidence for the existence of a simple adjustment to the maximum Jeffreys'-penalized likelihood estimates that delivers high accuracy in terms of signal recovery even in cases where estimates from ML and other recently-proposed corrective methods do not exist.

The use of Air traffic management (ATM) simulators for planing and operations can be challenging due to their modelling complexity. This paper presents XALM (eXplainable Active Learning Metamodel), a three-step framework integrating active learning and SHAP (SHapley Additive exPlanations) values into simulation metamodels for supporting ATM decision-making. XALM efficiently uncovers hidden relationships among input and output variables in ATM simulators, those usually of interest in policy analysis. Our experiments show XALM's predictive performance comparable to the XGBoost metamodel with fewer simulations. Additionally, XALM exhibits superior explanatory capabilities compared to non-active learning metamodels. Using the `Mercury' (flight and passenger) ATM simulator, XALM is applied to a real-world scenario in Paris Charles de Gaulle airport, extending an arrival manager's range and scope by analysing six variables. This case study illustrates XALM's effectiveness in enhancing simulation interpretability and understanding variable interactions. By addressing computational challenges and improving explainability, XALM complements traditional simulation-based analyses. Lastly, we discuss two practical approaches for reducing the computational burden of the metamodelling further: we introduce a stopping criterion for active learning based on the inherent uncertainty of the metamodel, and we show how the simulations used for the metamodel can be reused across key performance indicators, thus decreasing the overall number of simulations needed.

This paper addresses the problem of providing robust estimators under a functional logistic regression model. Logistic regression is a popular tool in classification problems with two populations. As in functional linear regression, regularization tools are needed to compute estimators for the functional slope. The traditional methods are based on dimension reduction or penalization combined with maximum likelihood or quasi--likelihood techniques and for that reason, they may be affected by misclassified points especially if they are associated to functional covariates with atypical behaviour. The proposal given in this paper adapts some of the best practices used when the covariates are finite--dimensional to provide reliable estimations. Under regularity conditions, consistency of the resulting estimators and rates of convergence for the predictions are derived. A numerical study illustrates the finite sample performance of the proposed method and reveals its stability under different contamination scenarios. A real data example is also presented.

Penalized $M-$estimators for logistic regression models have been previously study for fixed dimension in order to obtain sparse statistical models and automatic variable selection. In this paper, we derive asymptotic results for penalized $M-$estimators when the dimension $p$ grows to infinity with the sample size $n$. Specifically, we obtain consistency and rates of convergence results, for some choices of the penalty function. Moreover, we prove that these estimators consistently select variables with probability tending to 1 and derive their asymptotic distribution.

Gaussian processes (GPs) are widely-used tools in spatial statistics and machine learning and the formulae for the mean function and covariance kernel of a GP $v$ that is the image of another GP $u$ under a linear transformation $T$ acting on the sample paths of $u$ are well known, almost to the point of being folklore. However, these formulae are often used without rigorous attention to technical details, particularly when $T$ is an unbounded operator such as a differential operator, which is common in many modern applications. This note provides a self-contained proof of the claimed formulae for the case of a closed, densely-defined operator $T$ acting on the sample paths of a square-integrable (not necessarily Gaussian) stochastic process. Our proof technique relies upon Hille's theorem for the Bochner integral of a Banach-valued random variable.

Linear regression and classification models with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression models based on fusion penalties are presented. The first one is a generalization of the variable fusion model based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.

In this work, we address parametric non-stationary fluid dynamics problems within a model order reduction setting based on domain decomposition. Starting from the domain decomposition approach, we derive an optimal control problem, for which we present the convergence analysis. The snapshots for the high-fidelity model are obtained with the Finite Element discretisation, and the model order reduction is then proposed both in terms of time and physical parameters, with a standard POD-Galerkin projection. We test the proposed methodology on two fluid dynamics benchmarks: the non-stationary backward-facing step and lid-driven cavity flow. Finally, also in view of future works, we compare the intrusive POD--Galerkin approach with a non--intrusive approach based on Neural Networks.

We study the numerical solution of a Cahn-Hilliard/Allen-Cahn system with strong coupling through state and gradient dependent non-diagonal mobility matrices. A fully discrete approximation scheme in space and time is proposed which preserves the underlying gradient flow structure and leads to dissipation of the free-energy on the discrete level. Existence and uniqueness of the discrete solution is established and relative energy estimates are used to prove optimal convergence rates in space and time under minimal smoothness assumptions. Numerical tests are presented for illustration of the theoretical results and to demonstrate the viability of the proposed methods.

We consider the degree-Rips construction from topological data analysis, which provides a density-sensitive, multiparameter hierarchical clustering algorithm. We analyze its stability to perturbations of the input data using the correspondence-interleaving distance, a metric for hierarchical clusterings that we introduce. Taking certain one-parameter slices of degree-Rips recovers well-known methods for density-based clustering, but we show that these methods are unstable. However, we prove that degree-Rips, as a multiparameter object, is stable, and we propose an alternative approach for taking slices of degree-Rips, which yields a one-parameter hierarchical clustering algorithm with better stability properties. We prove that this algorithm is consistent, using the correspondence-interleaving distance. We provide an algorithm for extracting a single clustering from one-parameter hierarchical clusterings, which is stable with respect to the correspondence-interleaving distance. And, we integrate these methods into a pipeline for density-based clustering, which we call Persistable. Adapting tools from multiparameter persistent homology, we propose visualization tools that guide the selection of all parameters of the pipeline. We demonstrate Persistable on benchmark datasets, showing that it identifies multi-scale cluster structure in data.

The development of technologies for causal inference with the privacy preservation of distributed data has attracted considerable attention in recent years. To address this issue, we propose a data collaboration quasi-experiment (DC-QE) that enables causal inference from distributed data with privacy preservation. In our method, first, local parties construct dimensionality-reduced intermediate representations from the private data. Second, they share intermediate representations, instead of private data for privacy preservation. Third, propensity scores were estimated from the shared intermediate representations. Finally, the treatment effects were estimated from propensity scores. Our method can reduce both random errors and biases, whereas existing methods can only reduce random errors in the estimation of treatment effects. Through numerical experiments on both artificial and real-world data, we confirmed that our method can lead to better estimation results than individual analyses. Dimensionality-reduction loses some of the information in the private data and causes performance degradation. However, we observed that in the experiments, sharing intermediate representations with many parties to resolve the lack of subjects and covariates, our method improved performance enough to overcome the degradation caused by dimensionality-reduction. With the spread of our method, intermediate representations can be published as open data to help researchers find causalities and accumulated as a knowledge base.

北京阿比特科技有限公司