亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose Neumann Series Neural Operator (NSNO) to learn the solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions. Helmholtz equation is a crucial partial differential equation (PDE) with applications in various scientific and engineering fields. However, efficient solver of Helmholtz equation is still a big challenge especially in the case of high wavenumber. Recently, deep learning has shown great potential in solving PDEs especially in learning solution operators. Inspired by Neumann series in Helmholtz equation, we design a novel network architecture in which U-Net is embedded inside to capture the multiscale feature. Extensive experiments show that the proposed NSNO significantly outperforms the state-of-the-art FNO with at least 60\% lower relative $L^2$-error, especially in the large wavenumber case, and has 50\% lower computational cost and less data requirement. Moreover, NSNO can be used as the surrogate model in inverse scattering problems. Numerical tests show that NSNO is able to give comparable results with traditional finite difference forward solver while the computational cost is reduced tremendously.

相關內容

In this paper, we introduce I3DE (Inconsistency Inspecting IDE) - an IDE plugin to inspect inconsistencies in PL/SQL code. We first observed the potential issues, e.g., misuses or bugs, that are introduced by the inconsistent understanding of PL/SQL semantics by PL/SQL programmers and DBMS developers, and propose a metamorphic testing-based approach for inspecting such inconsistencies in PL/SQL code. We design and implement our approach in I3DE, a widely usable plugin for the IntelliJ Platform. We conducted a comparative user study involving 16 participants, and the findings indicate that I3DE is consistently effective and efficient in helping programmers identify and avoid inconsistencies across different programming difficulties

Misinformation is a prevalent societal issue due to its potential high risks. Out-of-context (OOC) misinformation, where authentic images are repurposed with false text, is one of the easiest and most effective ways to mislead audiences. Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments, which is essential for debunking misinformation. While Multimodal Large Language Models (MLLMs) have rich knowledge and innate capability for visual reasoning and explanation generation, they still lack sophistication in understanding and discovering the subtle crossmodal differences. In this paper, we introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation. SNIFFER employs two-stage instruction tuning on InstructBLIP. The first stage refines the model's concept alignment of generic objects with news-domain entities and the second stage leverages language-only GPT-4 generated OOC-specific instruction data to fine-tune the model's discriminatory powers. Enhanced by external tools and retrieval, SNIFFER not only detects inconsistencies between text and image but also utilizes external knowledge for contextual verification. Our experiments show that SNIFFER surpasses the original MLLM by over 40% and outperforms state-of-the-art methods in detection accuracy. SNIFFER also provides accurate and persuasive explanations as validated by quantitative and human evaluations.

In pursuit of more inclusive Vision-Language Models (VLMs), this study introduces a Large Multilingual Multimodal Model called PALO. PALO offers visual reasoning capabilities in 10 major languages, including English, Chinese, Hindi, Spanish, French, Arabic, Bengali, Russian, Urdu, and Japanese, that span a total of ~5B people (65% of the world population). Our approach involves a semi-automated translation approach to adapt the multimodal instruction dataset from English to the target languages using a fine-tuned Large Language Model, thereby ensuring high linguistic fidelity while allowing scalability due to minimal manual effort. The incorporation of diverse instruction sets helps us boost overall performance across multiple languages especially those that are underrepresented like Hindi, Arabic, Bengali, and Urdu. The resulting models are trained across three scales (1.7B, 7B and 13B parameters) to show the generalization and scalability where we observe substantial improvements compared to strong baselines. We also propose the first multilingual multimodal benchmark for the forthcoming approaches to evaluate their vision-language reasoning capabilities across languages. Code: //github.com/mbzuai-oryx/PALO.

In this paper, we introduce a set representation called polynomial logical zonotopes for performing exact and computationally efficient reachability analysis on logical systems. Polynomial logical zonotopes are a generalization of logical zonotopes, which are able to represent up to 2^n binary vectors using only n generators. Due to their construction, logical zonotopes are only able to support exact computations of some logical operations (XOR, NOT, XNOR), while other operations (AND, NAND, OR, NOR) result in over-approximations in the reduced space, i.e., generator space. In order to perform all fundamental logical operations exactly, we formulate a generalization of logical zonotopes that is constructed by dependent generators and exponent matrices. We prove that through this polynomial-like construction, we are able to perform all of the fundamental logical operations (XOR, NOT, XNOR, AND, NAND, OR, NOR) exactly in the generator space. While we are able to perform all of the logical operations exactly, this comes with a slight increase in computational complexity compared to logical zonotopes. We show that we can use polynomial logical zonotopes to perform exact reachability analysis while retaining a low computational complexity. To illustrate and showcase the computational benefits of polynomial logical zonotopes, we present the results of performing reachability analysis on two use cases: (1) safety verification of an intersection crossing protocol and (2) reachability analysis on a high-dimensional Boolean function. Moreover, to highlight the extensibility of logical zonotopes, we include an additional use case where we perform a computationally tractable exhaustive search for the key of a linear feedback shift register.

In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping.

We introduces Crimson, a system that enhances the strategic reasoning capabilities of Large Language Models (LLMs) within the realm of cybersecurity. By correlating CVEs with MITRE ATT&CK techniques, Crimson advances threat anticipation and strategic defense efforts. Our approach includes defining and evaluating cybersecurity strategic tasks, alongside implementing a comprehensive human-in-the-loop data-synthetic workflow to develop the CVE-to-ATT&CK Mapping (CVEM) dataset. We further enhance LLMs' reasoning abilities through a novel Retrieval-Aware Training (RAT) process and its refined iteration, RAT-R. Our findings demonstrate that an LLM fine-tuned with our techniques, possessing 7 billion parameters, approaches the performance level of GPT-4, showing markedly lower rates of hallucination and errors, and surpassing other models in strategic reasoning tasks. Moreover, domain-specific fine-tuning of embedding models significantly improves performance within cybersecurity contexts, underscoring the efficacy of our methodology. By leveraging Crimson to convert raw vulnerability data into structured and actionable insights, we bolster proactive cybersecurity defenses.

In this paper, we study the problem of optimal data collection for policy evaluation in linear bandits. In policy evaluation, we are given a target policy and asked to estimate the expected reward it will obtain when executed in a multi-armed bandit environment. Our work is the first work that focuses on such optimal data collection strategy for policy evaluation involving heteroscedastic reward noise in the linear bandit setting. We first formulate an optimal design for weighted least squares estimates in the heteroscedastic linear bandit setting that reduces the MSE of the value of the target policy. We then use this formulation to derive the optimal allocation of samples per action during data collection. We then introduce a novel algorithm SPEED (Structured Policy Evaluation Experimental Design) that tracks the optimal design and derive its regret with respect to the optimal design. Finally, we empirically validate that SPEED leads to policy evaluation with mean squared error comparable to the oracle strategy and significantly lower than simply running the target policy.

Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. How to effectively adapt LLMs to new scenarios with fewer training samples is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named SEED, which stands for Sample-Efficient adaptation with Error-Driven learning for code generation. SEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome its own shortcomings, thus achieving efficient learning. Specifically, SEED involves identifying error code generated by LLMs, employing Self-revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to traditional fine-tuning approaches, SEED achieves superior performance with fewer training samples, showing a relative improvement of 27.2%-325.0% in Pass@1. We also validate the effectiveness of Self-revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, SEED consistently demonstrates strong performance across various LLMs, underscoring its generalizability.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司