亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning models have become increasingly popular for predicting the results of soccer matches, however, the lack of publicly-available benchmark datasets has made model evaluation challenging. The 2023 Soccer Prediction Challenge required the prediction of match results first in terms of the exact goals scored by each team, and second, in terms of the probabilities for a win, draw, and loss. The original training set of matches and features, which was provided for the competition, was augmented with additional matches that were played between 4 April and 13 April 2023, representing the period after which the training set ended, but prior to the first matches that were to be predicted (upon which the performance was evaluated). A CatBoost model was employed using pi-ratings as the features, which were initially identified as the optimal choice for calculating the win/draw/loss probabilities. Notably, deep learning models have frequently been disregarded in this particular task. Therefore, in this study, we aimed to assess the performance of a deep learning model and determine the optimal feature set for a gradient-boosted tree model. The model was trained using the most recent five years of data, and three training and validation sets were used in a hyperparameter grid search. The results from the validation sets show that our model had strong performance and stability compared to previously published models from the 2017 Soccer Prediction Challenge for win/draw/loss prediction.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Learning · 均值 · 機器學習模型 ·
2023 年 11 月 8 日

This study presents an innovative method for predicting the market value of professional soccer players using explainable machine learning models. Using a dataset curated from the FIFA website, we employ an ensemble machine learning approach coupled with Shapley Additive exPlanations (SHAP) to provide detailed explanations of the models' predictions. The GBDT model achieves the highest mean R-Squared (0.8780) and the lowest mean Root Mean Squared Error (3,221,632.175), indicating its superior performance among the evaluated models. Our analysis reveals that specific skills such as ball control, short passing, finishing, interceptions, dribbling, and tackling are paramount within the skill dimension, whereas sprint speed and acceleration are critical in the fitness dimension, and reactions are preeminent in the cognitive dimension. Our results offer a more accurate, objective, and consistent framework for market value estimation, presenting useful insights for managerial decisions in player transfers.

Motion forecasting plays a crucial role in autonomous driving, with the aim of predicting the future reasonable motions of traffic agents. Most existing methods mainly model the historical interactions between agents and the environment, and predict multi-modal trajectories in a feedforward process, ignoring potential trajectory changes caused by future interactions between agents. In this paper, we propose a novel Future Feedback Interaction Network (FFINet) to aggregate features the current observations and potential future interactions for trajectory prediction. Firstly, we employ different spatial-temporal encoders to embed the decomposed position vectors and the current position of each scene, providing rich features for the subsequent cross-temporal aggregation. Secondly, the relative interaction and cross-temporal aggregation strategies are sequentially adopted to integrate features in the current fusion module, observation interaction module, future feedback module and global fusion module, in which the future feedback module can enable the understanding of pre-action by feeding the influence of preview information to feedforward prediction. Thirdly, the comprehensive interaction features are further fed into final predictor to generate the joint predicted trajectories of multiple agents. Extensive experimental results show that our FFINet achieves the state-of-the-art performance on Argoverse 1 and Argoverse 2 motion forecasting benchmarks.

The success of deep active learning hinges on the choice of an effective acquisition function, which ranks not yet labeled data points according to their expected informativeness. Many acquisition functions are (partly) based on the uncertainty that the current model has about the class label of a point, yet there is no generally agreed upon strategy for computing such uncertainty. This paper proposes a new and very simple approach to computing uncertainty in deep active learning with a Convolutional Neural Network (CNN). The main idea is to use the feature representation extracted by the CNN as data for training a Sum-Product Network (SPN). Since SPNs are typically used for estimating the distribution of a dataset, they are well suited to the task of estimating class probabilities that can be used directly by standard acquisition functions such as max entropy and variational ratio. The effectiveness of our method is demonstrated in an experimental study on several standard benchmark datasets for image classification, where we compare it to various state-of-the-art methods for assessing uncertainty in deep active learning.

In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Query rewriting serves as an important technique to bridge semantic gaps inherent in the semantic matching process. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of \textit{``\nothing''} caused by semantic gap. In this paper, we present \textbf{\method}, a comprehensive framework that \textbf{B}ridges the s\textbf{E}mantic gap for long-tail \textbf{QUE}ries. \method comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. Specifically, we first construct a rewriting dataset based on rejection sampling, and mix it with multiple auxiliary tasks data to fine tune our large language model (LLM) in a supervised fashion during the first stage. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, which would be fed into Taobao offline system to simulate the retrieval process and obtain the partial order. Leveraging the partial order of candidate rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in enhancing retrieval performance. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (\#Trans) and unique visitor (UV) for long-tail queries. \method has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

北京阿比特科技有限公司