亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robotic navigation in unknown, cluttered environments with limited sensing capabilities poses significant challenges in robotics. Local trajectory optimization methods, such as Model Predictive Path Intergal (MPPI), are a promising solution to this challenge. However, global guidance is required to ensure effective navigation, especially when encountering challenging environmental conditions or navigating beyond the planning horizon. This study presents the GP-MPPI, an online learning-based control strategy that integrates MPPI with a local perception model based on Sparse Gaussian Process (SGP). The key idea is to leverage the learning capability of SGP to construct a variance (uncertainty) surface, which enables the robot to learn about the navigable space surrounding it, identify a set of suggested subgoals, and ultimately recommend the optimal subgoal that minimizes a predefined cost function to the local MPPI planner. Afterward, MPPI computes the optimal control sequence that satisfies the robot and collision avoidance constraints. Such an approach eliminates the necessity of a global map of the environment or an offline training process. We validate the efficiency and robustness of our proposed control strategy through both simulated and real-world experiments of 2D autonomous navigation tasks in complex unknown environments, demonstrating its superiority in guiding the robot safely towards its desired goal while avoiding obstacles and escaping entrapment in local minima. The GPU implementation of GP-MPPI, including the supplementary video, is available at //github.com/IhabMohamed/GP-MPPI.

相關內容

The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or expression transferring are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces still remain under-explored. To push the related frontier research, we introduce a new benchmark called Open-World DeepFake Attribution (OW-DFA), which aims to evaluate attribution performance against various types of fake faces under open-world scenarios. Meanwhile, we propose a novel framework named Contrastive Pseudo Learning (CPL) for the OW-DFA task through 1) introducing a Global-Local Voting module to guide the feature alignment of forged faces with different manipulated regions, 2) designing a Confidence-based Soft Pseudo-label strategy to mitigate the pseudo-noise caused by similar methods in unlabeled set. In addition, we extend the CPL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments verify the superiority of our proposed method on the OW-DFA and also demonstrate the interpretability of deepfake attribution task and its impact on improving the security of deepfake detection area.

Despite significant improvements in robot capabilities, they are likely to fail in human-robot collaborative tasks due to high unpredictability in human environments and varying human expectations. In this work, we explore the role of explanation of failures by a robot in a human-robot collaborative task. We present a user study incorporating common failures in collaborative tasks with human assistance to resolve the failure. In the study, a robot and a human work together to fill a shelf with objects. Upon encountering a failure, the robot explains the failure and the resolution to overcome the failure, either through handovers or humans completing the task. The study is conducted using different levels of robotic explanation based on the failure action, failure cause, and action history, and different strategies in providing the explanation over the course of repeated interaction. Our results show that the success in resolving the failures is not only a function of the level of explanation but also the type of failures. Furthermore, while novice users rate the robot higher overall in terms of their satisfaction with the explanation, their satisfaction is not only a function of the robot's explanation level at a certain round but also the prior information they received from the robot.

The rapidly evolving nature of Android apps poses a significant challenge to static batch machine learning algorithms employed in malware detection systems, as they quickly become obsolete. Despite this challenge, the existing literature pays limited attention to addressing this issue, with many advanced Android malware detection approaches, such as Drebin, DroidDet and MaMaDroid, relying on static models. In this work, we show how retraining techniques are able to maintain detector capabilities over time. Particularly, we analyze the effect of two aspects in the efficiency and performance of the detectors: 1) the frequency with which the models are retrained, and 2) the data used for retraining. In the first experiment, we compare periodic retraining with a more advanced concept drift detection method that triggers retraining only when necessary. In the second experiment, we analyze sampling methods to reduce the amount of data used to retrain models. Specifically, we compare fixed sized windows of recent data and state-of-the-art active learning methods that select those apps that help keep the training dataset small but diverse. Our experiments show that concept drift detection and sample selection mechanisms result in very efficient retraining strategies which can be successfully used to maintain the performance of the static Android malware state-of-the-art detectors in changing environments.

Ensuring validation for highly automated driving poses significant obstacles to the widespread adoption of highly automated vehicles. Scenario-based testing offers a potential solution by reducing the homologation effort required for these systems. However, a crucial prerequisite, yet unresolved, is the definition and reduction of the test space to a finite number of scenarios. To tackle this challenge, we propose an extension to a contrastive learning approach utilizing graphs to construct a meaningful embedding space. Our approach demonstrates the continuous mapping of scenes using scene-specific features and the formation of thematically similar clusters based on the resulting embeddings. Based on the found clusters, similar scenes could be identified in the subsequent test process, which can lead to a reduction in redundant test runs.

Controlled execution of dynamic motions in quadrupedal robots, especially those with articulated soft bodies, presents a unique set of challenges that traditional methods struggle to address efficiently. In this study, we tackle these issues by relying on a simple yet effective two-stage learning framework to generate dynamic motions for quadrupedal robots. First, a gradient-free evolution strategy is employed to discover simply represented control policies, eliminating the need for a predefined reference motion. Then, we refine these policies using deep reinforcement learning. Our approach enables the acquisition of complex motions like pronking and back-flipping, effectively from scratch. Additionally, our method simplifies the traditionally labour-intensive task of reward shaping, boosting the efficiency of the learning process. Importantly, our framework proves particularly effective for articulated soft quadrupeds, whose inherent compliance and adaptability make them ideal for dynamic tasks but also introduce unique control challenges.

Accurate air pollution forecasting plays a crucial role in controlling air quality and minimizing adverse effects on human life. Among pollutants, atmospheric particulate matter (PM) is particularly significant, affecting both visibility and human health. In this study the concentration of air pollutants and comprehensive air quality index (CAI) data collected from 2015 to 2018 in Seoul, South Korea was analyzed. Using two different statistical models: error, trend, season (ETS) and autoregressive moving-average (ARIMA), measured monthly average PM2.5 concentration were used as input to forecast the monthly averaged concentration of PM2.5 12 months ahead. To evaluate the performance of the ETS model, five evaluation criteria were used: mean error (ME), root mean squared error (RMSE), mean absolute error (MAE), mean percentage error (MPE), and mean absolute percentage error (MAPE). Data collected from January 2019 to December 2019 were used for cross-validation check of ETS model. The best fitted ARIMA model was determined by examining the AICc (Akaike Information Criterion corrected) value. The results indicated that the ETS model outperforms the ARIMA model.

Fine-grained visual classification (FGVC) involves categorizing fine subdivisions within a broader category, which poses challenges due to subtle inter-class discrepancies and large intra-class variations. However, prevailing approaches primarily focus on uni-modal visual concepts. Recent advancements in pre-trained vision-language models have demonstrated remarkable performance in various high-level vision tasks, yet the applicability of such models to FGVC tasks remains uncertain. In this paper, we aim to fully exploit the capabilities of cross-modal description to tackle FGVC tasks and propose a novel multimodal prompting solution, denoted as MP-FGVC, based on the contrastive language-image pertaining (CLIP) model. Our MP-FGVC comprises a multimodal prompts scheme and a multimodal adaptation scheme. The former includes Subcategory-specific Vision Prompt (SsVP) and Discrepancy-aware Text Prompt (DaTP), which explicitly highlights the subcategory-specific discrepancies from the perspectives of both vision and language. The latter aligns the vision and text prompting elements in a common semantic space, facilitating cross-modal collaborative reasoning through a Vision-Language Fusion Module (VLFM) for further improvement on FGVC. Moreover, we tailor a two-stage optimization strategy for MP-FGVC to fully leverage the pre-trained CLIP model and expedite efficient adaptation for FGVC. Extensive experiments conducted on four FGVC datasets demonstrate the effectiveness of our MP-FGVC.

A typical application of upper-limb exoskeleton robots is deployment in rehabilitation training, helping patients to regain manipulative abilities. However, as the patient is not always capable of following the robot, safety issues may arise during the training. Due to the bias in different patients, an individualized scheme is also important to ensure that the robot suits the specific conditions (e.g., movement habits) of a patient, hence guaranteeing effectiveness. To fulfill this requirement, this paper proposes a new motion planning scheme for upper-limb exoskeleton robots, which drives the robot to provide customized, safe, and individualized assistance using both human demonstration and interactive learning. Specifically, the robot first learns from a group of healthy subjects to generate a reference motion trajectory via probabilistic movement primitives (ProMP). It then learns from the patient during the training process to further shape the trajectory inside a moving safe region. The interactive data is fed back into the ProMP iteratively to enhance the individualized features for as long as the training process continues. The robot tracks the individualized trajectory under a variable impedance model to realize the assistance. Finally, the experimental results are presented in this paper to validate the proposed control scheme.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司