亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present an implicit Crank-Nicolson finite element (FE) scheme for solving a nonlinear Schr\"odinger-type system, which includes Schr\"odinger-Helmholz system and Schr\"odinger-Poisson system. In our numerical scheme, we employ an implicit Crank-Nicolson method for time discretization and a conforming FE method for spatial discretization. The proposed method is proved to be well-posedness and ensures mass and energy conservation at the discrete level. Furthermore, we prove optimal $L^2$ error estimates for the fully discrete solutions. Finally, some numerical examples are provided to verify the convergence rate and conservation properties.

相關內容

The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.

Matrix evolution equations occur in many applications, such as dynamical Lyapunov/Sylvester systems or Riccati equations in optimization and stochastic control, machine learning or data assimilation. In many cases, their tightest stability condition is coming from a linear term. Exponential time differencing (ETD) is known to produce highly stable numerical schemes by treating the linear term in an exact fashion. In particular, for stiff problems, ETD methods are a method of choice. We propose an extension of the class of ETD algorithms to matrix-valued dynamical equations. This allows us to produce highly efficient and stable integration schemes. We show their efficiency and applicability for a variety of real-world problems, from geophysical applications to dynamical problems in machine learning.

We design a fully implementable scheme to compute the invariant distribution of ergodic McKean-Vlasov SDE satisfying a uniform confluence property. Under natural conditions, we prove various convergence results notably we obtain rates for the Wasserstein distance in quadratic mean and almost sure sense.

This paper analyzes a full discretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. The discretization uses the Euler scheme for temporal discretization and the finite element method for spatial discretization. A key contribution of this work is the introduction of a novel stability estimate for a discrete stochastic convolution, which plays a crucial role in establishing pathwise uniform convergence estimates for fully discrete approximations of nonlinear stochastic parabolic equations. By using this stability estimate in conjunction with the discrete stochastic maximal $L^p$-regularity estimate, the study derives a pathwise uniform convergence rate that encompasses general general spatial $L^q$-norms. Moreover, the theoretical convergence rate is verified by numerical experiments.

The purpose of this work is to improve the estimates for the $\Delta$-GenEO method from the paper "Overlapping Schwarz methods with GenEO coarse spaces for indefinite and nonself-adjoint problems" by N. Bootland, V. Dolean, I. G Graham, C. Ma, R. Scheichl (//doi.org/10.1093/imanum/drac036) when applied to the indefinite Helmholtz equation. We derive k-dependent estimates of quantities of interest ensuring the robustness of the method.

A residual-type a posteriori error estimation is developed for an interior penalty virtual element method (IPVEM) to solve a Kirchhoff plate bending problem. The computable error estimator is incorporated. We derive the reliability and efficiency of the a posteriori error bound by constructing an enriching operator and establishing some related error estimates. As an outcome of the error estimator, an adaptive VEM is introduced by means of the mesh refinement strategy with the one-hanging-node rule. Numerical results on various benchmark tests confirm the robustness of the proposed error estimator and show the efficiency of the resulting adaptive VEM. (This is the initial version; additional content will be included in the final version.)

In this paper we develop a Neumann-Neumann type domain decomposition method for elliptic problems on metric graphs. We describe the iteration in the continuous and discrete setting and rewrite the latter as a preconditioner for the Schur complement system. Then we formulate the discrete iteration as an abstract additive Schwarz iteration and prove that it convergences to the finite element solution with a rate that is independent of the finite element mesh size. We show that the condition number of the Schur complement is also independent of the finite element mesh size. We provide an implementation and test it on various examples of interest and compare it to other preconditioners.

We use Stein characterisations to derive new moment-type estimators for the parameters of several truncated multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the truncated multivariate normal distribution and truncated products of independent univariate distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator (MLE). The quality of these estimators is assessed through competitive simulation studies, in which we compare their behaviour to the performance of the MLE and the score matching approach.

In this paper, we innovatively develop uniform/variable-time-step weighted and shifted BDF2 (WSBDF2) methods for the anisotropic Cahn-Hilliard (CH) model, combining the scalar auxiliary variable (SAV) approach with two types of stabilized techniques. Using the concept of $G$-stability, the uniform-time-step WSBDF2 method is theoretically proved to be energy-stable. Due to the inapplicability of the relevant G-stability properties, another technique is adopted in this work to demonstrate the energy stability of the variable-time-step WSBDF2 method. In addition, the two numerical schemes are all mass-conservative.Finally, numerous numerical simulations are presented to demonstrate the stability and accuracy of these schemes.

In this paper, we investigate the module-checking problem of pushdown multi-agent systems (PMS) against ATL and ATL* specifications. We establish that for ATL, module checking of PMS is 2EXPTIME-complete, which is the same complexity as pushdown module-checking for CTL. On the other hand, we show that ATL* module-checking of PMS turns out to be 4EXPTIME-complete, hence exponentially harder than both CTL* pushdown module-checking and ATL* model-checking of PMS. Our result for ATL* provides a rare example of a natural decision problem that is elementary yet but with a complexity that is higher than triply exponential-time.

北京阿比特科技有限公司