亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To substantially enhance robot intelligence, there is a pressing need to develop a large model that enables general-purpose robots to proficiently undertake a broad spectrum of manipulation tasks, akin to the versatile task-planning ability exhibited by LLMs. The vast diversity in objects, robots, and manipulation tasks presents huge challenges. Our work introduces a comprehensive framework to develop a foundation model for general robotic manipulation that formalizes a manipulation task as contact synthesis. Specifically, our model takes as input object and robot manipulator point clouds, object physical attributes, target motions, and manipulation region masks. It outputs contact points on the object and associated contact forces or post-contact motions for robots to achieve the desired manipulation task. We perform extensive experiments both in the simulation and real-world settings, manipulating articulated rigid objects, rigid objects, and deformable objects that vary in dimensionality, ranging from one-dimensional objects like ropes to two-dimensional objects like cloth and extending to three-dimensional objects such as plasticine. Our model achieves average success rates of around 90\%. Supplementary materials and videos are available on our project website at //manifoundationmodel.github.io/.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 設計 · 可辨認的 · · MoDELS ·
2024 年 11 月 1 日

RNA design aims to find a sequence that folds with highest probability into a designated target structure. However, certain structures are undesignable, meaning no sequence can fold into the target structure under the default (Turner) RNA folding model. Understanding the specific local structures (i.e., "motifs") that contribute to undesignability is crucial for refining RNA folding models and determining the limits of RNA designability. Despite its importance, this problem has received very little attention, and previous efforts are neither scalable nor interpretable. We develop a new theoretical framework for motif (un-)designability, and design scalable and interpretable algorithms to identify minimal undesignable motifs within a given RNA secondary structure. Our approach establishes motif undesignability by searching for rival motifs, rather than exhaustively enumerating all (partial) sequences that could potentially fold into the motif. Furthermore, we exploit rotational invariance in RNA structures to detect, group, and reuse equivalent motifs and to construct a database of unique minimal undesignable motifs. To achieve that, we propose a loop-pair graph representation for motifs and a recursive graph isomorphism algorithm for motif equivalence. Our algorithms successfully identify 24 unique minimal undesignable motifs among 18 undesignable puzzles from the Eterna100 benchmark. Surprisingly, we also find over 350 unique minimal undesignable motifs and 663 undesignable native structures in the ArchiveII dataset, drawn from a diverse set of RNA families. Our source code is available at //github.com/shanry/RNA-Undesign and our web server is available at //linearfold.org/motifs.

We focus on the task of language-conditioned grasping in clutter, in which a robot is supposed to grasp the target object based on a language instruction. Previous works separately conduct visual grounding to localize the target object, and generate a grasp for that object. However, these works require object labels or visual attributes for grounding, which calls for handcrafted rules in planner and restricts the range of language instructions. In this paper, we propose to jointly model vision, language and action with object-centric representation. Our method is applicable under more flexible language instructions, and not limited by visual grounding error. Besides, by utilizing the powerful priors from the pre-trained multi-modal model and grasp model, sample efficiency is effectively improved and the sim2real problem is relived without additional data for transfer. A series of experiments carried out in simulation and real world indicate that our method can achieve better task success rate by less times of motion under more flexible language instructions. Moreover, our method is capable of generalizing better to scenarios with unseen objects and language instructions. Our code is available at //github.com/xukechun/Vision-Language-Grasping

The emergence of foundational models and generative artificial intelligence (GenAI) is poised to transform productivity in scientific computing, especially in code development, refactoring, and translating from one programming language to another. However, because the output of GenAI cannot be guaranteed to be correct, manual intervention remains necessary. Some of this intervention can be automated through task-specific tools, alongside additional methodologies for correctness verification and effective prompt development. We explored the application of GenAI in assisting with code translation, language interoperability, and codebase inspection within a legacy Fortran codebase used to simulate particle interactions at the Large Hadron Collider (LHC). In the process, we developed a tool, CodeScribe, which combines prompt engineering with user supervision to establish an efficient process for code conversion. In this paper, we demonstrate how CodeScribe assists in converting Fortran code to C++, generating Fortran-C APIs for integrating legacy systems with modern C++ libraries, and providing developer support for code organization and algorithm implementation. We also address the challenges of AI-driven code translation and highlight its benefits for enhancing productivity in scientific computing workflows.

Reconfigurable robots are at the forefront of robotics innovation due to their unmatched versatility and adaptability in addressing various tasks through collaborative operations. This paper explores the design and implementation of a novel pendulum-based magnetic coupling system within a reconfigurable disk robot. Diverging from traditional designs, this system emphasizes enhancing coupling strength while maintaining the compactness of the outer shell. We employ parametric optimization techniques, including magnetic array simulations, to improve coupling performance. Additionally, we conduct a comprehensive analysis of the rolling robot's motion to assess its operational effectiveness in the coupling mechanism. This examination reveals intriguing new motion patterns driven by frictional and sliding effects between the rolling disk modules and the ground. Furthermore, the new setup introduces a novel problem in the area of nonprehensile manipulation.

This work takes a pedagogical lens to explore the implications of generative AI (GenAI) models and tools, such as ChatGPT and GitHub Copilot, in a semester-long 2nd-year undergraduate Software Engineering Team Project. Qualitative findings from survey (39 students) and interviews (eight students) provide insights into the students' views on the impact of GenAI use on their coding experience, learning, and self-efficacy. Our results address a particular gap in understanding the role and implications of GenAI on teamwork, team-efficacy, and team dynamics. The analysis of the learning aspects is distinguished by the application of learning and pedagogy informed lenses to discuss the data. We propose a preliminary design space for GenAI-based programming learning tools highlighting the importance of considering the roles that GenAI can play during the learning process, the varying support-ability patterns that can be applied to each role, and the importance of supporting transparency in GenAI for team members and students in addition to educators.

Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission, where only information relevant to a specific task is communicated. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and subpar performance. To address this, we propose an information-bottleneck method, named CLAD (contrastive learning and adversarial disentanglement). CLAD leverages contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the lack of reliable and reproducible methods to gain insight into the informativeness and minimality of the encoded feature vectors, we introduce a new technique to compute the information retention index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input, reflecting the minimality of the encoded features. The IRI quantifies the minimality and informativeness of the encoded feature vectors across different task-oriented communication techniques. Our extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of task performance, privacy preservation, and IRI. CLAD achieves a predictive performance improvement of around 2.5-3%, along with a 77-90% reduction in IRI and a 57-76% decrease in adversarial accuracy.

To develop high-performing Visual Language Models (VLMs), it is essential to prepare multimodal resources, such as image-text pairs, interleaved data, and instruction data. While multimodal resources for English are abundant, there is a significant lack of corresponding resources for non-English languages, such as Japanese. To address this problem, we take Japanese as a non-English language and propose a method for rapidly creating Japanese multimodal datasets from scratch. We collect Japanese image-text pairs and interleaved data from web archives and generate Japanese instruction data directly from images using an existing VLM. Our experimental results show that a VLM trained on these native datasets outperforms those relying on machine-translated content.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司