亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we consider the numerical solution of fractional terminal value problems (FDE-TVPs). In particular, the proposed procedure uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving fractional initial value problems (FDE-IVPs), able to produce spectrally accurate solutions of FDE problems. Some numerical tests are reported to make evidence of its effectiveness.

相關內容

論文(Paper)是專知網站核心資料文檔,包括全球頂級期刊、頂級會議論文,及全球頂尖高校博士碩士學位論文。重點關注中國計算機學會推薦的國際學術會議和期刊,CCF-A、B、C三類。通過人機協作方式,匯編、挖掘后呈現于專知網站。

In this paper we propose and analyze a novel multilevel version of Stein variational gradient descent (SVGD). SVGD is a recent particle based variational inference method. For Bayesian inverse problems with computationally expensive likelihood evaluations, the method can become prohibitive as it requires to evolve a discrete dynamical system over many time steps, each of which requires likelihood evaluations at all particle locations. To address this, we introduce a multilevel variant that involves running several interacting particle dynamics in parallel corresponding to different approximation levels of the likelihood. By carefully tuning the number of particles at each level, we prove that a significant reduction in computational complexity can be achieved. As an application we provide a numerical experiment for a PDE driven inverse problem, which confirms the speed up suggested by our theoretical results.

In this paper, we consider feature screening for ultrahigh dimensional clustering analyses. Based on the observation that the marginal distribution of any given feature is a mixture of its conditional distributions in different clusters, we propose to screen clustering features by independently evaluating the homogeneity of each feature's mixture distribution. Important cluster-relevant features have heterogeneous components in their mixture distributions and unimportant features have homogeneous components. The well-known EM-test statistic is used to evaluate the homogeneity. Under general parametric settings, we establish the tail probability bounds of the EM-test statistic for the homogeneous and heterogeneous features, and further show that the proposed screening procedure can achieve the sure independent screening and even the consistency in selection properties. Limiting distribution of the EM-test statistic is also obtained for general parametric distributions. The proposed method is computationally efficient, can accurately screen for important cluster-relevant features and help to significantly improve clustering, as demonstrated in our extensive simulation and real data analyses.

This paper aims first to perform robust continuous analysis of a mixed nonlinear formulation for stress-assisted diffusion of a solute that interacts with an elastic material, and second to propose and analyse a virtual element formulation of the model problem. The two-way coupling mechanisms between the Herrmann formulation for linear elasticity and the reaction-diffusion equation (written in mixed form) consist of diffusion-induced active stress and stress-dependent diffusion. The two sub-problems are analysed using the extended Babu\v{s}ka--Brezzi--Braess theory for perturbed saddle-point problems. The well-posedness of the nonlinearly coupled system is established using a Banach fixed-point strategy under the smallness assumption on data. The virtual element formulations for the uncoupled sub-problems are proven uniquely solvable by a fixed-point argument in conjunction with appropriate projection operators. We derive the a priori error estimates, and test the accuracy and performance of the proposed method through computational simulations.

In this paper, we tackle a persistent numerical instability within the total Lagrangian smoothed particle hydrodynamics (TLSPH) solid dynamics. Specifically, we address the hourglass modes that may grow and eventually deteriorate the reliability of simulation, particularly in the scenarios characterized by large deformations. We propose a generalized essentially non-hourglass formulation based on volumetric-deviatoric stress decomposition, offering a general solution for elasticity, plasticity, anisotropy, and other material models. Comparing the standard SPH formulation with the original non-nested Laplacian operator applied in our previous work \cite{wu2023essentially} to handle the hourglass issues in standard elasticity, we introduce a correction for the discretization of shear stress that relies on the discrepancy produced by a tracing-back prediction of the initial inter-particle direction from the current deformation gradient. The present formulation, when applied to standard elastic materials, is able to recover the original Laplacian operator. Due to the dimensionless nature of the correction, this formulation handles complex material models in a very straightforward way. Furthermore, a magnitude limiter is introduced to minimize the correction in domains where the discrepancy is less pronounced. The present formulation is validated, with a single set of modeling parameters, through a series of benchmark cases, confirming good stability and accuracy across elastic, plastic, and anisotropic materials. To showcase its potential, the formulation is employed to simulate a complex problem involving viscous plastic Oobleck material, contacts, and very large deformation.

The present article introduces, mathematically analyzes, and numerically validates a new weak Galerkin (WG) mixed-FEM based on Banach spaces for the stationary Navier--Stokes equation in pseudostress-velocity formulation. More precisely, a modified pseudostress tensor, called $ \boldsymbol{\sigma} $, depending on the pressure, and the diffusive and convective terms has been introduced in the proposed technique, and a dual-mixed variational formulation has been derived where the aforementioned pseudostress tensor and the velocity, are the main unknowns of the system, whereas the pressure is computed via a post-processing formula. Thus, it is sufficient to provide a WG space for the tensor variable and a space of piecewise polynomial vectors of total degree at most 'k' for the velocity. Moreover, in order to define the weak discrete bilinear form, whose continuous version involves the classical divergence operator, the weak divergence operator as a well-known alternative for the classical divergence operator in a suitable discrete subspace is proposed. The well-posedness of the numerical solution is proven using a fixed-point approach and the discrete versions of the Babu\v{s}ka-Brezzi theory and the Banach-Ne\v{c}as-Babu\v{s}ka theorem. Additionally, an a priori error estimate is derived for the proposed method. Finally, several numerical results illustrating the method's good performance and confirming the theoretical rates of convergence are presented.

This paper is concerned with the numerical computation of scattering resonances of the Laplacian for Dirichlet obstacles with rough boundary. We prove that under mild geometric assumptions on the obstacle there exists an algorithm whose output is guaranteed to converge to the set of resonances of the problem. The result is formulated using the framework of Solvability Complexity Indices. The proof is constructive and provides an efficient numerical method. The algorithm is based on a combination of a Glazman decomposition, a polygonal approximation of the obstacle and a finite element method. Our result applies in particular to obstacles with fractal boundary, such as the Koch Snowflake and certain filled Julia sets. Finally, we provide numerical experiments in MATLAB for a range of interesting obstacle domains.

This paper is concerned with a Bayesian approach to testing hypotheses in statistical inverse problems. Based on the posterior distribution $\Pi \left(\cdot |Y = y\right)$, we want to infer whether a feature $\left\langle\varphi, u^\dagger\right\rangle$ of the unknown quantity of interest $u^\dagger$ is positive. This can be done by the so-called maximum a posteriori test. We provide a frequentistic analysis of this test's properties such as level and power, and prove that it is a regularized test in the sense of Kretschmann et al. (2024). Furthermore we provide lower bounds for its power under classical spectral source conditions in case of Gaussian priors. Numerical simulations illustrate its superior performance both in moderately and severely ill-posed situations.

Using validated numerical methods, interval arithmetic and Taylor models, we propose a certified predictor-corrector loop for tracking zeros of polynomial systems with a parameter. We provide a Rust implementation which shows tremendous improvement over existing software for certified path tracking.

In recent years, many positivity-preserving schemes for initial value problems have been constructed by modifying a Runge--Kutta (RK) method by weighting the right-hand side of the system of differential equations with solution-dependent factors. These include the classes of modified Patankar--Runge--Kutta (MPRK) and Geometric Conservative (GeCo) methods. Compared to traditional RK methods, the analysis of accuracy and stability of these methods is more complicated. In this work, we provide a comprehensive and unifying theory of order conditions for such RK-like methods, which differ from original RK schemes in that their coefficients are solution-dependent. The resulting order conditions are themselves solution-dependent and obtained using the theory of NB-series, and thus, can easily be read off from labeled N-trees. We present for the first time order conditions for MPRK and GeCo schemes of arbitrary order; For MPRK schemes, the order conditions are given implicitly in terms of the stages. From these results, we recover as particular cases all known order conditions from the literature for first- and second-order GeCo as well as first-, second- and third-order MPRK methods. Additionally, we derive sufficient and necessary conditions in an explicit form for 3rd and 4th order GeCo schemes as well as 4th order MPRK methods. We also present a new 4th order MPRK method within this framework and numerically confirm its convergence rate.

In this paper, we provide an analysis of a recently proposed multicontinuum homogenization technique. The analysis differs from those used in classical homogenization methods for several reasons. First, the cell problems in multicontinuum homogenization use constraint problems and can not be directly substituted into the differential operator. Secondly, the problem contains high contrast that remains in the homogenized problem. The homogenized problem averages the microstructure while containing the small parameter. In this analysis, we first based on our previous techniques, CEM-GMsFEM, to define a CEM-downscaling operator that maps the multicontinuum quantities to an approximated microscopic solution. Following the regularity assumption of the multicontinuum quantities, we construct a downscaling operator and the homogenized multicontinuum equations using the information of linear approximation of the multicontinuum quantities. The error analysis is given by the residual estimate of the homogenized equations and the well-posedness assumption of the homogenized equations.

北京阿比特科技有限公司