亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose and analyze a novel multilevel version of Stein variational gradient descent (SVGD). SVGD is a recent particle based variational inference method. For Bayesian inverse problems with computationally expensive likelihood evaluations, the method can become prohibitive as it requires to evolve a discrete dynamical system over many time steps, each of which requires likelihood evaluations at all particle locations. To address this, we introduce a multilevel variant that involves running several interacting particle dynamics in parallel corresponding to different approximation levels of the likelihood. By carefully tuning the number of particles at each level, we prove that a significant reduction in computational complexity can be achieved. As an application we provide a numerical experiment for a PDE driven inverse problem, which confirms the speed up suggested by our theoretical results.

相關內容

There are now many explainable AI methods for understanding the decisions of a machine learning model. Among these are those based on counterfactual reasoning, which involve simulating features changes and observing the impact on the prediction. This article proposes to view this simulation process as a source of creating a certain amount of knowledge that can be stored to be used, later, in different ways. This process is illustrated in the additive model and, more specifically, in the case of the naive Bayes classifier, whose interesting properties for this purpose are shown.

This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.

Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, variational inference and stochastic calculus, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We show that these phase-transitions are always in a mean-field universality class, as they are the result of a self-consistency condition in the generative dynamics. We argue that the critical instability that arises from the phase transitions lies at the heart of their generative capabilities, which are characterized by a set of mean field critical exponents. Furthermore, using the statistical physics of disordered systems, we show that memorization can be understood as a form of critical condensation corresponding to a disordered phase transition. Finally, we show that the dynamic equation of the generative process can be interpreted as a stochastic adiabatic transformation that minimizes the free energy while keeping the system in thermal equilibrium.

The recent paper (IEEE Trans. IT 69, 1680) introduced an analytical method for calculating the channel capacity without the need for iteration. This method has certain limitations that restrict its applicability. Furthermore, the paper does not provide an explanation as to why the channel capacity can be solved analytically in this particular case. In order to broaden the scope of this method and address its limitations, we turn our attention to the reverse em-problem, proposed by Toyota (Information Geometry, 3, 1355 (2020)). This reverse em-problem involves iteratively applying the inverse map of the em iteration to calculate the channel capacity, which represents the maximum mutual information. However, several open problems remained unresolved in Toyota's work. To overcome these challenges, we formulate the reverse em-problem based on Bregman divergence and provide solutions to these open problems. Building upon these results, we transform the reverse em-problem into em-problems and derive a non-iterative formula for the reverse em-problem. This formula can be viewed as a generalization of the aforementioned analytical calculation method. Importantly, this derivation sheds light on the information geometrical structure underlying this special case. By effectively addressing the limitations of the previous analytical method and providing a deeper understanding of the underlying information geometrical structure, our work significantly expands the applicability of the proposed method for calculating the channel capacity without iteration.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

Randomized Controlled Trials (RCTs) may suffer from limited scope. In particular, samples may be unrepresentative: some RCTs over- or under- sample individuals with certain characteristics compared to the target population, for which one wants conclusions on treatment effectiveness. Re-weighting trial individuals to match the target population can improve the treatment effect estimation. In this work, we establish the exact expressions of the bias and variance of such reweighting procedures -- also called Inverse Propensity of Sampling Weighting (IPSW) -- in presence of categorical covariates for any sample size. Such results allow us to compare the theoretical performance of different versions of IPSW estimates. Besides, our results show how the performance (bias, variance, and quadratic risk) of IPSW estimates depends on the two sample sizes (RCT and target population). A by-product of our work is the proof of consistency of IPSW estimates. Results also reveal that IPSW performances are improved when the trial probability to be treated is estimated (rather than using its oracle counterpart). In addition, we study choice of variables: how including covariates that are not necessary for identifiability of the causal effect may impact the asymptotic variance. Including covariates that are shifted between the two samples but not treatment effect modifiers increases the variance while non-shifted but treatment effect modifiers do not. We illustrate all the takeaways in a didactic example, and on a semi-synthetic simulation inspired from critical care medicine.

This paper establishes the optimal sub-Gaussian variance proxy for truncated Gaussian and truncated exponential random variables. The proofs rely on first characterizing the optimal variance proxy as the unique solution to a set of two equations and then observing that for these two truncated distributions, one may find explicit solutions to this set of equations. Moreover, we establish the conditions under which the optimal variance proxy coincides with the variance, thereby characterizing the strict sub-Gaussianity of the truncated random variables. Specifically, we demonstrate that truncated Gaussian variables exhibit strict sub-Gaussian behavior if and only if they are symmetric, meaning their truncation is symmetric with respect to the mean. Conversely, truncated exponential variables are shown to never exhibit strict sub-Gaussian properties. These findings contribute to the understanding of these prevalent probability distributions in statistics and machine learning, providing a valuable foundation for improved and optimal modeling and decision-making processes.

In this paper, a class of high-order methods to numerically solve Functional Differential Equations with Piecewise Continuous Arguments (FDEPCAs) is discussed. The framework stems from the expansion of the vector field associated with the reference differential equation along the shifted and scaled Legendre polynomial orthonormal basis, working on a suitable extension of Hamiltonian Boundary Value Methods. Within the design of the methods, a proper generalization of the perturbation results coming from the field of ordinary differential equations is considered, with the aim of handling the case of FDEPCAs. The error analysis of the devised family of methods is performed, while a few numerical tests on Hamiltonian FDEPCAs are provided, to give evidence to the theoretical findings and show the effectiveness of the obtained resolution strategy.

In this paper, we present and analyze fully discrete finite difference schemes designed for solving the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation involving the fractional Laplacian. We design the scheme by introducing the discrete fractional Laplacian operator which is consistent with the continuous operator, and posses certain properties which are instrumental for the convergence analysis. Assuming the initial data (u_0 \in H^{1+\alpha}(\mathbb{R})), where (\alpha \in [1,2)), our study establishes the convergence of the approximate solutions obtained by the fully discrete finite difference schemes to a classical solution of the fractional KdV equation. Theoretical results are validated through several numerical illustrations for various values of fractional exponent $\alpha$. Furthermore, we demonstrate that the Crank-Nicolson finite difference scheme preserves the inherent conserved quantities along with the improved convergence rates.

In this paper we analyze the weighted essentially non-oscillatory (WENO) schemes in the finite volume framework by examining the first step of the explicit third-order total variation diminishing Runge-Kutta method. The rationale for the improved performance of the finite volume WENO-M, WENO-Z and WENO-ZR schemes over WENO-JS in the first time step is that the nonlinear weights corresponding to large errors are adjusted to increase the accuracy of numerical solutions. Based on this analysis, we propose novel Z-type nonlinear weights of the finite volume WENO scheme for hyperbolic conservation laws. Instead of taking the difference of the smoothness indicators for the global smoothness indicator, we employ the logarithmic function with tuners to ensure that the numerical dissipation is reduced around discontinuities while the essentially non-oscillatory property is preserved. The proposed scheme does not necessitate substantial extra computational expenses. Numerical examples are presented to demonstrate the capability of the proposed WENO scheme in shock capturing.

北京阿比特科技有限公司