We show that the set of $m \times m$ complex skew-symmetric matrix polynomials of even grade $d$, i.e., of degree at most $d$, and (normal) rank at most $2r$ is the closure of the single set of matrix polynomials with certain, explicitly described, complete eigenstructure. This complete eigenstructure corresponds to the most generic $m \times m$ complex skew-symmetric matrix polynomials of even grade $d$ and rank at most $2r$. The analogous problem for the case of skew-symmetric matrix polynomials of odd grade is solved in [Linear Algebra Appl., 536:1-18, 2018].
The classical Heawood inequality states that if the complete graph $K_n$ on $n$ vertices is embeddable in the sphere with $g$ handles, then $g \ge\dfrac{(n-3)(n-4)}{12}$. A higher-dimensional analogue of the Heawood inequality is the K\"uhnel conjecture. In a simplified form it states that for every integer $k>0$ there is $c_k>0$ such that if the union of $k$-faces of $n$-simplex embeds into the connected sum of $g$ copies of the Cartesian product $S^k\times S^k$ of two $k$-dimensional spheres, then $g\ge c_k n^{k+1}$. For $k>1$ only linear estimates were known. We present a quadratic estimate $g\ge c_k n^2$. The proof is based on beautiful and fruitful interplay between geometric topology, combinatorics and linear algebra.
We prove that among $n$ points in the plane in general position, the shortest distance occurs at most $43n/18$ times, improving upon the upper bound of $17n/7$ obtained by T\'oth in 1997.
We study the problem of estimating the score function of an unknown probability distribution $\rho^*$ from $n$ independent and identically distributed observations in $d$ dimensions. Assuming that $\rho^*$ is subgaussian and has a Lipschitz-continuous score function $s^*$, we establish the optimal rate of $\tilde \Theta(n^{-\frac{2}{d+4}})$ for this estimation problem under the loss function $\|\hat s - s^*\|^2_{L^2(\rho^*)}$ that is commonly used in the score matching literature, highlighting the curse of dimensionality where sample complexity for accurate score estimation grows exponentially with the dimension $d$. Leveraging key insights in empirical Bayes theory as well as a new convergence rate of smoothed empirical distribution in Hellinger distance, we show that a regularized score estimator based on a Gaussian kernel attains this rate, shown optimal by a matching minimax lower bound. We also discuss the implication of our theory on the sample complexity of score-based generative models.
At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay for a weaker notion of degeneracy, or even parameterized by the maximum degree $\Delta$, i.e., whether it can be turned into an algorithm with delay $f(\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, and as a first step toward answering that question, they note that they could not achieve these time bounds even for the particular case of minimal dominating sets enumeration. In this paper, using ordered generation, we show that an FPT-delay algorithm can be devised for minimal transversals enumeration parameterized by the maximum degree and dimension, giving a positive and more general answer to the latter question.
Given polynomials $g$ and $f_1,\dots,f_p$, all in $\Bbbk[x_1,\dots,x_n]$ for some field $\Bbbk$, we consider the problem of computing the critical points of the restriction of $g$ to the variety defined by $f_1=\cdots=f_p=0$. These are defined by the simultaneous vanishing of the $f_i$'s and all maximal minors of the Jacobian matrix associated to $(g,f_1, \ldots, f_p)$. We use the Eagon-Northcott complex associated to the ideal generated by these maximal minors to gain insight into the syzygy module of the system defining these critical points. We devise new $F_5$-type criteria to predict and avoid more reductions to zero when computing a Gr\"obner basis for the defining system of this critical locus. We give a bound for the arithmetic complexity of this enhanced $F_5$ algorithm and compare it to the best previously known bound for computing critical points using Gr\"obner bases.
In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.
In this contribution, we consider a zero-dimensional polynomial system in $n$ variables defined over a field $\mathbb{K}$. In the context of computing a Rational Univariate Representation (RUR) of its solutions, we address the problem of certifying a separating linear form and, once certified, calculating the RUR that comes from it, without any condition on the ideal else than being zero-dimensional. Our key result is that the RUR can be read (closed formula) from lexicographic Groebner bases of bivariate elimination ideals, even in the case where the original ideal that is not in shape position, so that one can use the same core as the well known FGLM method to propose a simple algorithm. Our first experiments, either with a very short code (300 lines) written in Maple or with a Julia code using straightforward implementations performing only classical Gaussian reductions in addition to Groebner bases for the degree reverse lexicographic ordering, show that this new method is already competitive with sophisticated state of the art implementations which do not certify the parameterizations.
By exploiting the connection between scattered $\mathbb{F}_q$-subspaces of $\mathbb{F}_{q^m}^3$ and minimal non degenerate $3$-dimensional rank metric codes of $\mathbb{F}_{q^m}^{n}$, $n \geq m+2$, described in [2], we will exhibit a new class of codes with parameters $[m+2,3,m-2]_{q^m/q}$ for infinite values of $q$ and $m \geq 5$ odd. Moreover, by studying the geometric structures of these scattered subspaces, we determine the rank weight distribution of the associated codes.
The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, $\chi_{o}(G)$, of $G$ is the least $k$ such that $G$ has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We say that a graph class $\mathcal{G}$ is $\chi_{pcf}$-bounded ($\chi_{o}$-bounded) if there is a function $f$ such that $\chi_{pcf}(G) \leq f(\chi(G))$ ($\chi_{o}(G) \leq f(\chi(G))$) for every $G \in \mathcal{G}$. Caro et al. (2022) asked for classes that are linearly $\chi_{pcf}$-bounded ($\chi_{pcf}$-bounded), and as a starting point, they showed that every claw-free graph $G$ satisfies $\chi_{pcf}(G) \le 2\Delta(G)+1$, which implies $\chi_{pcf}(G) \le 4\chi(G)+1$. In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph $G$ satisfies $\chi_{pcf}(G) \le \Delta(G)+6$, and even $\chi_{pcf}(G) \le \Delta(G)+4$ if it is a quasi-line graph. These results also give evidence for a conjecture by Caro et al. Moreover, we show that convex-round graphs and permutation graphs are linearly $\chi_{pcf}$-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly $\chi_{pcf}$-bounded to deciding if the bipartite graphs in the class are $\chi_{pcf}$-bounded by an absolute constant. This lemma complements a theorem of Liu (2022) and motivates us to study boundedness in bipartite graphs. In particular, we show that biconvex bipartite graphs are $\chi_{pcf}$-bounded while convex bipartite graphs are not even $\chi_o$-bounded, and exhibit a class of bipartite circle graphs that is linearly $\chi_o$-bounded but not $\chi_{pcf}$-bounded.
Is there an algorithm that takes a game in normal form as input, and outputs a Nash equilibrium? If the payoffs are integers, the answer is yes, and lot of work has been done in its computational complexity. If the payoffs are permitted to be real numbers, the answer is no, for continuity reasons. It is worthwhile to investigate the precise degree of non-computability (the Weihrauch degree), since knowing the degree entails what other approaches are available (eg, is there a randomized algorithm with positive success change?). The two player case has already been fully classified, but the multiplayer case remains open and is addressed here. Our approach involves classifying the degree of finding roots of polynomials, and lifting this to systems of polynomial inequalities via cylindrical algebraic decomposition.