亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ensuring autonomous vehicle (AV) security remains a critical concern. An area of paramount importance is the study of physical-world adversarial examples (AEs) aimed at exploiting vulnerabilities in perception systems. However, most of the prevailing research on AEs has neglected considerations of stealthiness and legality, resulting in scenarios where human drivers would promptly intervene or attackers would be swiftly detected and punished. These limitations hinder the applicability of such examples in real-life settings. In this paper, we introduce a novel approach to generate AEs using what we term negative shadows: deceptive patterns of light on the road created by strategically blocking sunlight, which then cast artificial lane-like patterns. These shadows are inconspicuous to a driver while deceiving AV perception systems, particularly those reliant on lane detection algorithms. By prioritizing the stealthy nature of attacks to minimize driver interventions and ensuring their legality from an attacker's standpoint, a more plausible range of scenarios is established. In multiple scenarios, including at low speeds, our method shows a high safety violation rate. Using a 20-meter negative shadow, it can direct a vehicle off-road with a 100% violation rate at speeds over 10 mph. Other attack scenarios, such as causing collisions, can be performed with at least 30 meters of negative shadow, achieving a 60-100% success rate. The attack also maintains an average stealthiness of 83.6% as measured through a human subject experiment, ensuring its efficacy in covert settings.

相關內容

Large Language Models (LLMs) have demonstrated unparalleled effectiveness in various NLP tasks, and integrating LLMs with automatic speech recognition (ASR) is becoming a mainstream paradigm. Building upon this momentum, our research delves into an in-depth examination of this paradigm on a large open-source Chinese dataset. Specifically, our research aims to evaluate the impact of various configurations of speech encoders, LLMs, and projector modules in the context of the speech foundation encoder-LLM ASR paradigm. Furthermore, we introduce a three-stage training approach, expressly developed to enhance the model's ability to align auditory and textual information. The implementation of this approach, alongside the strategic integration of ASR components, enabled us to achieve the SOTA performance on the AISHELL-1, Test_Net, and Test_Meeting test sets. Our analysis presents an empirical foundation for future research in LLM-based ASR systems and offers insights into optimizing performance using Chinese datasets. We will publicly release all scripts used for data preparation, training, inference, and scoring, as well as pre-trained models and training logs to promote reproducible research.

A safe and efficient decision-making system is crucial for autonomous vehicles. However, the complexity of driving environments limits the effectiveness of many rule-based and machine learning approaches. Reinforcement Learning (RL), with its robust self-learning capabilities and environmental adaptability, offers a promising solution to these challenges. Nevertheless, safety and efficiency concerns during training hinder its widespread application. To address these concerns, we propose a novel RL framework, Simple to Complex Collaborative Decision (S2CD). First, we rapidly train the teacher model in a lightweight simulation environment. In the more complex and realistic environment, teacher intervenes when the student agent exhibits suboptimal behavior by assessing actions' value to avert dangers. We also introduce an RL algorithm called Adaptive Clipping Proximal Policy Optimization Plus, which combines samples from both teacher and student policies and employs dynamic clipping strategies based on sample importance. This approach improves sample efficiency while effectively alleviating data imbalance. Additionally, we employ the Kullback-Leibler divergence as a policy constraint, transforming it into an unconstrained problem with the Lagrangian method to accelerate the student's learning. Finally, a gradual weaning strategy ensures that the student learns to explore independently over time, overcoming the teacher's limitations and maximizing performance. Simulation experiments in highway lane-change scenarios show that the S2CD framework enhances learning efficiency, reduces training costs, and significantly improves safety compared to state-of-the-art algorithms. This framework also ensures effective knowledge transfer between teacher and student models, even with suboptimal teachers, the student achieves superior performance, demonstrating the robustness and effectiveness of S2CD.

The increasing interest in autonomous driving systems has highlighted the need for an in-depth analysis of human driving behavior in diverse scenarios. Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices and ensure seamless integration into human-dominated environments. This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets, including Argoverse 2, nuPlan, Lyft, and DeepUrban. By defining and leveraging existing safety and behavior-related metrics, such as time to collision, adherence to speed limits, and interactions with other traffic participants, we aim to provide a comprehensive understanding of each datasets strengths and limitations. Our analysis focuses on the distribution of data samples, identifying noise, outliers, and undesirable behaviors exhibited by human drivers in both the training and validation sets. The results underscore the need for applying robust filtering techniques to certain datasets due to high levels of noise and the presence of such undesirable behaviors.

A critical aspect of safe and efficient motion planning for autonomous vehicles (AVs) is to handle the complex and uncertain behavior of surrounding human-driven vehicles (HDVs). Despite intensive research on driver behavior prediction, existing approaches typically overlook the interactions between AVs and HDVs assuming that HDV trajectories are not affected by AV actions. To address this gap, we present a transformer-transfer learning-based interaction-aware trajectory predictor for safe motion planning of autonomous driving, focusing on a vehicle-to-vehicle (V2V) interaction scenario consisting of an AV and an HDV. Specifically, we construct a transformer-based interaction-aware trajectory predictor using widely available datasets of HDV trajectory data and further transfer the learned predictor using a small set of AV-HDV interaction data. Then, to better incorporate the proposed trajectory predictor into the motion planning module of AVs, we introduce an uncertainty quantification method to characterize the errors of the predictor, which are integrated into the path-planning process. Our experimental results demonstrate the value of explicitly considering interactions and handling uncertainties.

Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demonstrate outstanding performance across a diverse set of domains, at a reduced training and inference cost compared to attention-based transformers. Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states (e.g. GateLoop, Mamba, GLA), then the resulting architecture can surpass in both in accuracy and efficiency attention-powered foundation models trained on text, at scales of billion parameters. In this paper, we give theoretical grounding to this recent finding using tools from Rough Path Theory: we show that when random linear recurrences are equipped with simple input-controlled transitions (selectivity mechanism), then the hidden state is provably a low-dimensional projection of a powerful mathematical object called the signature of the input -- capturing non-linear interactions between tokens at distinct timescales. Our theory not only motivates the success of modern selective state-space models such as Mamba but also provides a solid framework to understand the expressive power of future SSM variants.

A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs). In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs. At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm. Convergence results for these RL algorithms rest on convergence results for the NPG algorithm. However, all existing results on the convergence of the NPG algorithm are limited to finite-state settings. We study a general class of queueing MDPs, and prove a $O(1/\sqrt{T})$ convergence rate for the NPG algorithm, if the NPG algorithm is initialized with the MaxWeight policy. This is the first convergence rate bound for the NPG algorithm for a general class of infinite-state average-reward MDPs. Moreover, our result applies to a beyond the queueing setting to any countably-infinite MDP satisfying certain mild structural assumptions, given a sufficiently good initial policy. Key to our result are state-dependent bounds on the relative value function achieved by the iterate policies of the NPG algorithm.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司