亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider first-order logic over the subword ordering on finite words, where each word is available as a constant. Our first result is that the $\Sigma_1$ theory is undecidable (already over two letters). We investigate the decidability border by considering fragments where all but a certain number of variables are alternation bounded, meaning that the variable must always be quantified over languages with a bounded number of letter alternations. We prove that when at most two variables are not alternation bounded, the $\Sigma_1$ fragment is decidable, and that it becomes undecidable when three variables are not alternation bounded. Regarding higher quantifier alternation depths, we prove that the $\Sigma_2$ fragment is undecidable already for one variable without alternation bound and that when all variables are alternation bounded, the entire first-order theory is decidable.

相關內容

In this paper, we study the topological asymptotic expansion of a topology optimisation problem that is constrained by the Poisson equation with the design/shape variable entering through the right hand side. Using an averaged adjoint approach, we give explicit formulas for topological derivatives of arbitrary order for both an $L_2$ and $H^1$ tracking-type cost function in both dimension two and three and thereby derive the complete asymptotic expansion. As the asymptotic behaviour of the fundamental solution of the Laplacian differs in dimension two and three, also the derivation of the topological expansion significantly differs in dimension two and three. The complete expansion for the $H^1$ cost functional directly follows from the analysis of the variation of the state equation. However, the proof of the asymptotics of the $L_2$ tracking-type cost functional is significantly more involved and, surprisingly, the asymptotic behaviour of the bi-harmonic equation plays a crucial role in our proof.

The kinetic theory provides a physical basis for developing multiscal methods for gas flows covering a wide range of flow regimes. A particular challenge for kinetic schemes is whether they can capture the correct hydrodynamic behaviors of the system in the continuum regime (i.e., as the Knudsen number $\epsilon\ll 1$ ) without enforcing kinetic scale resolution. At the current stage, {the main approach to analyze such a property is the asymptotic preserving (AP) concept, which aims to show whether a kinetic scheme reduces to a solver for the hydrodynamic equations as $\epsilon \to 0$, such as the shock capturing scheme for the Euler equations. However, the detailed asymptotic properties of the kinetic scheme are indistinguishable when $\epsilon$ is small but finite under the AP framework}. In order to distinguish different characteristics of kinetic schemes, in this paper we introduce the concept of unified preserving (UP) aiming at assessing asmyptotic orders of a kinetic scheme by employing the modified equation approach and Chapman-Enskon analysis. It is shown that the UP properties of a kinetic scheme generally depend on the spatial/temporal accuracy and closely on the inter-connections among the three scales (kinetic scale, numerical scale, and hydrodynamic scale) and their corresponding coupled dynamics. Specifically, the numerical resolution and specific discretization of particle transport and collision determine the flow physics of the scheme in different regimes, especially in the near continuum limit. As two examples, the UP methodology is applied to analyze the discrete unified gas-kinetic scheme and a second-order implicit-explicit Runge-Kutta scheme in their asymptotic behaviors in the continuum limit.

Given a graph whose nodes may be coloured red, the parity of the number of red nodes can easily be maintained with first-order update rules in the dynamic complexity framework DynFO of Patnaik and Immerman. Can this be generalised to other or even all queries that are definable in first-order logic extended by parity quantifiers? We consider the query that asks whether the number of nodes that have an edge to a red node is odd. Already this simple query of quantifier structure parity-exists is a major roadblock for dynamically capturing extensions of first-order logic. We show that this query cannot be maintained with quantifier-free first-order update rules, and that variants induce a hierarchy for such update rules with respect to the arity of the maintained auxiliary relations. Towards maintaining the query with full first-order update rules, it is shown that degree-restricted variants can be maintained.

The metric dimension dim(G) of a graph $G$ is the minimum cardinality of a subset $S$ of vertices of $G$ such that each vertex of $G$ is uniquely determined by its distances to $S$. It is well-known that the metric dimension of a graph can be drastically increased by the modification of a single edge. Our main result consists in proving that the increase of the metric dimension of an edge addition can be amortized in the sense that if the graph consists of a spanning tree $T$ plus $c$ edges, then the metric dimension of $G$ is at most the metric dimension of $T$ plus $6c$. We then use this result to prove a weakening of a conjecture of Eroh et al. The zero forcing number $Z(G)$ of $G$ is the minimum cardinality of a subset $S$ of black vertices (whereas the other vertices are colored white) of $G$ such that all the vertices will turned black after applying finitely many times the following rule: a white vertex is turned black if it is the only white neighbor of a black vertex. Eroh et al. conjectured that, for any graph $G$, $dim(G)\leq Z(G) + c(G)$, where $c(G)$ is the number of edges that have to be removed from $G$ to get a forest. They proved the conjecture is true for trees and unicyclic graphs. We prove a weaker version of the conjecture: $dim(G)\leq Z(G)+6c(G)$ holds for any graph. We also prove that the conjecture is true for graphs with edge disjoint cycles, widely generalizing the unicyclic result of Eroh et al.

We introduce a general definition of hybrid transforms for constructible functions. These are integral transforms combining Lebesgue integration and Euler calculus. Lebesgue integration gives access to well-studied kernels and to regularity results, while Euler calculus conveys topological information and allows for compatibility with operations on constructible functions. We conduct a systematic study of such transforms and introduce two new ones: the Euler-Fourier and Euler-Laplace transforms. We show that the first has a left inverse and that the second provides a satisfactory generalization of Govc and Hepworth's persistent magnitude to constructible sheaves, in particular to multi-parameter persistent modules. Finally, we prove index-theoretic formulae expressing a wide class of hybrid transforms as generalized Euler integral transforms. This yields expectation formulae for transforms of constructible functions associated to (sub)level-sets persistence of random Gaussian filtrations.

We study the complexity of small-depth Frege proofs and give the first tradeoffs between the size of each line and the number of lines. Existing lower bounds apply to the overall proof size -- the sum of sizes of all lines -- and do not distinguish between these notions of complexity. For depth-$d$ Frege proofs of the Tseitin principle where each line is a size-$s$ formula, we prove that $\exp(n/2^{\Omega(d\sqrt{\log s})})$ many lines are necessary. This yields new lower bounds on line complexity that are not implied by H{\aa}stad's recent $\exp(n^{\Omega(1/d)})$ lower bound on the overall proof size. For $s = \mathrm{poly}(n)$, for example, our lower bound remains $\exp(n^{1-o(1)})$ for all $d = o(\sqrt{\log n})$, whereas H{\aa}stad's lower bound is $\exp(n^{o(1)})$ once $d = \omega_n(1)$. Our main conceptual contribution is the simple observation that techniques for establishing correlation bounds in circuit complexity can be leveraged to establish such tradeoffs in proof complexity.

We investigate the equilibrium behavior for the decentralized cheap talk problem for real random variables and quadratic cost criteria in which an encoder and a decoder have misaligned objective functions. In prior work, it has been shown that the number of bins in any equilibrium has to be countable, generalizing a classical result due to Crawford and Sobel who considered sources with density supported on $[0,1]$. In this paper, we first refine this result in the context of log-concave sources. For sources with two-sided unbounded support, we prove that, for any finite number of bins, there exists a unique equilibrium. In contrast, for sources with semi-unbounded support, there may be a finite upper bound on the number of bins in equilibrium depending on certain conditions stated explicitly. Moreover, we prove that for log-concave sources, the expected costs of the encoder and the decoder in equilibrium decrease as the number of bins increases. Furthermore, for strictly log-concave sources with two-sided unbounded support, we prove convergence to the unique equilibrium under best response dynamics which starts with a given number of bins, making a connection with the classical theory of optimal quantization and convergence results of Lloyd's method. In addition, we consider more general sources which satisfy certain assumptions on the tail(s) of the distribution and we show that there exist equilibria with infinitely many bins for sources with two-sided unbounded support. Further explicit characterizations are provided for sources with exponential, Gaussian, and compactly-supported probability distributions.

We formulate a conjecture from graph theory that is equivalent to Nash-solvability of the finite two-person shortest path games with positive local costs. For the three-person games such conjecture fails.

Aiming at ontology-based data access to temporal data, we design two-dimensional temporal ontology and query languages by combining logics from the (extended) DL-Lite family with linear temporal logic LTL over discrete time (Z,<). Our main concern is first-order rewritability of ontology-mediated queries (OMQs) that consist of a 2D ontology and a positive temporal instance query. Our target languages for FO-rewritings are two-sorted FO(<) - first-order logic with sorts for time instants ordered by the built-in precedence relation < and for the domain of individuals - its extension FOE with the standard congruence predicates t \equiv 0 mod n, for any fixed n > 1, and FO(RPR) that admits relational primitive recursion. In terms of circuit complexity, FOE- and FO(RPR)-rewritability guarantee answering OMQs in uniform AC0 and NC1, respectively. We proceed in three steps. First, we define a hierarchy of 2D DL-Lite/LTL ontology languages and investigate the FO-rewritability of OMQs with atomic queries by constructing projections onto 1D LTL OMQs and employing recent results on the FO-rewritability of propositional LTL OMQs. As the projections involve deciding consistency of ontologies and data, we also consider the consistency problem for our languages. While the undecidability of consistency for 2D ontology languages with expressive Boolean role inclusions might be expected, we also show that, rather surprisingly, the restriction to Krom and Horn role inclusions leads to decidability (and ExpSpace-completeness), even if one admits full Booleans on concepts. As a final step, we lift some of the rewritability results for atomic OMQs to OMQs with expressive positive temporal instance queries. The lifting results are based on an in-depth study of the canonical models and only concern Horn ontologies.

We propose two new doxastic extensions of fuzzy \L ukasiewicz logic in which their semantics are Kripke-based with both fuzzy atomic propositions and fuzzy accessibility relations. A class of these extensions is equipped with uninformed belief operator, and the other class is based on a new notion of skeptical belief. We model a fuzzy version of muddy children problem and a CPA-security experiment using uniformed belief and skeptical belief, respectively. Moreover, we prove soundness and completeness for both of these belief extensions.

小貼士
登錄享
相關主題
北京阿比特科技有限公司